Adaptive defect correction methods for convection dominated, convection diffusion problems

被引:13
作者
Cawood, ME
Ervin, VJ
Layton, WJ
Maubach, JM
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Piedmont Coll, Dept Math, Demorest, GA 30535 USA
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[4] Eindhoven Inst Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
关键词
adaptivity; convection diffusion; defect correction method;
D O I
10.1016/S0377-0427(99)00278-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a posteriori error estimates for a defect correction method for approximating solutions of convection diffusion problems. The algorithms and estimators include the possibility of using in the discretization a nonlinear selection mechanism, which we find, improves solution quality in and near layers. Energy norm and L-2 a posteriori error estimates are proven for the full algorithm. Two examples of fully adaptive finite element-defect correction calculations are presented. These examples illustrate the scheme and demonstrate the effectiveness of the method. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 23 条
[1]  
[Anonymous], RAIRO RAN R
[2]  
Axelsson O., 1990, RAIRO-MATH MODEL NUM, V24, P423
[3]  
AXELSSON W, 1991, SPRINGER LECT NOTES, V1457
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]  
ERIKSSON K, 1993, MATH COMPUT, V60, P167, DOI 10.1090/S0025-5718-1993-1149289-9
[6]  
Eriksson K., 1995, ACTA NUMER, V4, P1
[7]   AN ANALYSIS OF A DEFECT-CORRECTION METHOD FOR A MODEL CONVECTION-DIFFUSION EQUATION [J].
ERVIN, V ;
LAYTON, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :169-179
[8]  
Hemker P.W., 1988, NUMERICAL METHODS FL, VIII, P153, DOI [10.2514/8.8656, DOI 10.2514/8.8656]
[9]  
HEMKER PW, 1992, ADV COMPUTATIONAL FL
[10]  
HEMKER PW, 1982, SPRINGER LECT NOTES, V942