A Quaternion-Based Robust Adaptive Spherical Simplex Unscented Particle Filter for MINS/VNS/GNS Integrated Navigation System

被引:12
作者
Jia, Ke [1 ]
Pei, Yifei [1 ]
Gao, Zhaohui [1 ]
Zhong, Yongmin [2 ]
Gao, Shesheng [1 ]
Wei, Wenhui [1 ]
Hu, Gaoge [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710129, Shaanxi, Peoples R China
[2] RMIT Univ, Sch Engn, Bundoora, Vic 3083, Australia
基金
中国国家自然科学基金;
关键词
AIDED INERTIAL NAVIGATION;
D O I
10.1155/2019/8532601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An improved filtering algorithm-robust adaptive spherical simplex unscented particle filter (RASSUPF) is proposed to achieve high accuracy, induce the amount of computation, and resist the influence of abnormal interference for the MINS/VNS/GNS integrated navigation system. This algorithm adopts spherical simplex unscented transformation (SSUT) to approximate the probability distribution, employs the spherical simplex unscented Kalman filter (SSUKF) to generate the importance sampling density of particle filter, and applies robust and adaptive estimation to control the influence of the abnormal information on the state model and the observation model. Simulation results demonstrate the proposed algorithm can effectively reduce the navigation error, improve the navigation positioning precision, and decrease the computation cost.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Realization of an autonomous integrated suite of strapdown astro-inertial navigation systems using unscented particle filtering [J].
Ali, Jamshaid ;
Fang Jiancheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (02) :169-183
[2]  
[Anonymous], P 14 ANN NEUR INF PR
[3]  
[Anonymous], 2013, Experimental Robotics
[4]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[5]   Vision-based intelligent vehicles: State of the art and perspectives [J].
Bertozzi, M ;
Broggi, A ;
Fascioli, A .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2000, 32 (01) :1-16
[6]   A survey of numerical methods for nonlinear filtering problems [J].
Budhiraja, Amarjit ;
Chen, Lingji ;
Lee, Chihoon .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) :27-36
[7]   GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects [J].
Caron, Francois ;
Duflos, Emmanuel ;
Pomorski, Denis ;
Vanheeghe, Philippe .
INFORMATION FUSION, 2006, 7 (02) :221-230
[8]  
Coopmans C., 2010, THESIS
[9]  
Dai ZG, 2014, 2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), P79, DOI 10.1109/ICSAI.2014.7009263
[10]   On sequential Monte Carlo sampling methods for Bayesian filtering [J].
Doucet, A ;
Godsill, S ;
Andrieu, C .
STATISTICS AND COMPUTING, 2000, 10 (03) :197-208