ERROR ESTIMATION FOR NUMERICAL METHODS USING THE ULTRA WEAK VARIATIONAL FORMULATION IN MODEL OF NEAR FIELD SCATTERING PROBLEM

被引:3
作者
Luan, Tian [1 ]
Ma, Fuming [2 ]
Liu, Minghui [2 ]
机构
[1] Beihua Univ, Sch Math & Stat, Fengman 132013, Jilin, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Helmholtz equation; Ultra weak variational formulation; Plane wave function; Evanescent wave function; Absorbing boundary condition; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; HELMHOLTZ-EQUATION; MICROSCOPY; PARTITION; VERSION; OPTICS;
D O I
10.4208/jcm.1403-m4404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the use of ultra weak variational formulation to solve a wave scattering problem in near field optics. In order to capture the sub-scale features of waves, we utilize evanescent wave functions together with plane wave functions to approximate the local properties of the field. We analyze the global convergence and give an error estimation of the method. Numerical examples are also presented to demonstrate the effectiveness of the strategy.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 2002, TEXTS APPL MATH
[2]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[3]  
2-N
[4]  
Barnett A. H., 2011, J SCI COMPUT, V32, P1417
[5]   NEAR-FIELD OPTICS - MICROSCOPY, SPECTROSCOPY, AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT [J].
BETZIG, E ;
TRAUTMAN, JK .
SCIENCE, 1992, 257 (5067) :189-195
[6]  
Carney PS, 2003, MATH SCI R, V47, P133
[7]   Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem [J].
Cessenat, O ;
Despres, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :255-299
[8]   NEAR-FIELD MICROSCOPY AND NEAR-FIELD OPTICS [J].
COURJON, D ;
BAINIER, C .
REPORTS ON PROGRESS IN PHYSICS, 1994, 57 (10) :989-1028
[9]   PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION [J].
Gittelson, Claude J. ;
Hiptmair, Ralf ;
Perugia, Ilaria .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :297-331
[10]   PLANE WAVE DISCONTINUOUS GALERKIN METHODS FOR THE 2D HELMHOLTZ EQUATION: ANALYSIS OF THE p-VERSION [J].
Hiptmair, R. ;
Moiola, A. ;
Perugia, I. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) :264-284