Correcting the output conductance for self-heating in InAlAs/InGaAs HBTs

被引:1
作者
Weiss, Oliver [1 ]
Baureis, Peter
Kellmann, Nikolai
Weber, Norbert
Weigel, Robert
机构
[1] Fraunhofer Inst Integrated Circuits, D-91058 Erlangen, Germany
[2] Univ Appl Sci Wurzburg Schweinfurt, D-97070 Wurzburg, Germany
[3] Univ Erlangen Nurnberg, D-91056 Erlangen, Germany
关键词
avalanche effect; current gain; heterojunction bipolar transistor (HBT); indium phosphide; InGaAs; output conductance; self-heating; temperature dependence;
D O I
10.1109/TED.2006.880829
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two methods to correct the output characteristics of a heterojunction bipolar transistor (HBT) for self-heating, which especially suit material systems with low thermal conductivity and high temperature dependence of the current gain, are presented. The first and more conventional approach uses direct measurements of dc parameters (thermal conductivity and the temperature dependence of the current gain). The second method is based on measurements of small-signal parameters. Both procedures are applied to measurements on InAlAs/InGaAs HBTs. These methods result in reconstructed output characteristics that show a temperature-independent behavior and little gradient in the linear region. The methods presented in this paper may be used to investigate the electric field distribution and the avalanche currents of transistors with low thermal conductivity and high temperature dependence of the current gain.
引用
收藏
页码:2231 / 2236
页数:6
相关论文
共 50 条
[21]   Determination of Self-Heating in Silicon Photomultipliers [J].
Garutti, Erika ;
Martens, Stephan ;
Schwandt, Joern ;
Villalba-Pedro, Carmen .
SENSORS, 2024, 24 (09)
[22]   SELF-HEATING CMOS FLOW SENSOR [J].
Waikhom, Reshmi ;
Yang, Lung-Jieh ;
Shih, Horng-Yuan ;
Kuo, Cai-Rong .
2021 21ST INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2021, :1279-1282
[23]   Self-heating of rolled ZnCuTi sheets [J].
M MILESI ;
D PINO MUÑOZ ;
A LAGROUM ;
C PRADILLE ;
P O BOUCHARD .
Sādhanā, 2020, 45
[24]   The Effect of Sulphide Mixtures on Self-Heating [J].
Payant, R. A. ;
Finch, J. A. .
CANADIAN METALLURGICAL QUARTERLY, 2010, 49 (04) :429-434
[25]   Self-Heating in Advanced CMOS Technologies [J].
Prasad, C. ;
Ramey, S. ;
Jiang, L. .
2017 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2017,
[26]   Self-heating of rolled ZnCuTi sheets [J].
Milesi, M. ;
Munoz, D. Pino ;
Lagroum, A. ;
Pradille, C. ;
Bouchard, P. O. .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2020, 45 (01)
[27]   Self-heating cancellation circuits for microbolometer [J].
Qian, XB ;
Xu, YP ;
Karunasiri, G .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 111 (2-3) :196-202
[28]   Thermal Studies of 3-D Stacked InGaAs HEMTs and Mitigation Strategy of Self-Heating Effect Using Buried Metal Insertion [J].
Jeong, Jaeyong ;
Kim, Seong Kwang ;
Suh, Yoon-Je ;
Shim, Joonsup ;
Beak, Woo Jin ;
Choi, Sung Joon ;
Kim, Joon Pyo ;
Kim, Bong Ho ;
Geum, Dae-Myeong ;
Kim, Jongmin ;
Kim, Sanghyeon .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (08) :4517-4523
[29]   Self-Heating Mitigation of TreeFETs by Interbridges [J].
Tsen, Chia-Jung ;
Chung, Chia-Che ;
Liu, C. W. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) :4123-4128
[30]   Effect of wood biomass components on self-heating [J].
Miyawaki, Nozomi ;
Fukushima, Takashi ;
Mizuno, Takafumi ;
Inoue, Miyao ;
Takisawa, Kenji .
BIORESOURCES AND BIOPROCESSING, 2021, 8 (01)