Algebraic limit cycles of degree 4 for quadratic systems

被引:27
作者
Chavarriga, J
Llibre, J [1 ]
Sorolla, J
机构
[1] Univ Autonoma Barcelona, Fac Ciencies, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Lleida, Dept Matemat, Lleida 25001, Spain
关键词
algebraic limit cycles; quadratic systems; quadratic vector fields;
D O I
10.1016/j.jde.2004.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Yablonskii (Differential Equations 2 (1996) 335) and Filipstov (Differential Equations 9 (1973) 983) proved the existence of two different families of algebraic limit cycles of degree 4 in the class of quadratic systems. It was an open problem to know if these two algebraic limit cycles where all the algebraic limit cycles of degree 4 for quadratic systems. Chavarriga (A new example of a quartic algebraic limit cycle for quadratic sytems, Universitat de Lleida, Preprint 1999) found a third family of this kind of algebraic limit cycles. Here, we prove that quadratic systems have exactly four different families of algebraic limit cycles. The proof provides new tools based on the index theory for algebraic solutions of polynomial vector fields. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 244
页数:39
相关论文
共 18 条
[1]  
Chavarriga J., 2001, LMS Journal of Computation and Mathematics, V4
[2]   Invariant algebraic curves and rational first integrals for planar polynomial vector fields [J].
Chavarriga, J ;
Llibre, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) :1-16
[3]  
Chavarriga J., 1999, NEW EXAMPLE QUARTIC
[4]  
CHIN YS, 1958, SCI SINICA, V7, P934
[5]   INVARIANT ALGEBRAIC-CURVES AND CONDITIONS FOR A CENTER [J].
CHRISTOPHER, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1209-1229
[6]  
COLL B, 1988, C MATH SOC JAN BOL, V53, P111
[7]  
Coppel WA., 1989, Dynamics Reported: A Series in Dynamical Systems and Their Applications, P61, DOI [10.1007/978-3-322-96657-5_3, DOI 10.1007/978-3-322-96657-5_3]
[8]  
DARBOUX G., 1878, B SCI MATH ASTRONOMI, V1, P60
[9]  
Evdokimenco R. M., 1974, DIFF EQUAT, V9, P1095
[10]  
Evdokimenco R.M, 1970, Differential Equations, V6, P1349