Re-evaluation of mitochondrial permeability transition as a primary neuroprotective target of minocycline

被引:41
作者
Mansson, Roland
Hansson, Magnus J.
Morota, Saori
Uchino, Hiroyuki
Ekdahl, Christine T.
Elmer, Eskil
机构
[1] Lund Univ, Dept Clin Sci, Sect Restorat Neurol, Lund, Sweden
[2] Tokyo Univ Pharm & Life Sci, Sch Life Sci, Lab Cellular Neurobiol, Hachioji, Tokyo, Japan
[3] Tokyo Med Univ, Hachioji Med Ctr, Dept Anesthesiol, Hachioji, Tokyo, Japan
关键词
neurodegeneration; amyotrophic lateral sclerosis; Huntington's disease; Parkinson's disease; motor neuron disease; spinal cord injury; ischemia; apoptosis; cyclospotin; minocycline; neuroprotection; brain mitochondria;
D O I
10.1016/j.nbd.2006.09.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Minocycline has been shown to be neuroprotective in ischemic and neurodegenerative disease models and could potentially be relevant for clinical use. We revisited the hypothesis that minocycline acts through direct inhibition of calcium-induced mitochondrial permeability transition (mPT) resulting in reduced release of cytochrome c (cyt c). Minocycline, at high dosage, was found to prevent calcium-induced mitochondrial swelling under energized conditions similarly to the mPT inhibitor cyclosporin A (CsA) in rodent mitochondria derived from the CNS. In contrast to CsA, minocycline dose-dependently reduced mitochondrial calcium retention capacity (CRC) and respiratory control ratios and was ineffective in the de-energized mPT assay. Further, minocycline did not inhibit calcium- or tBid-induced cyt c release. We conclude that the neuroprotective mechanism of minocycline is likely not related to direct inhibition of mPT and propose that the mitochondrial effects of minocycline may contribute to toxicity rather than tissue protection at high dosing in animals and humans. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 47 条
[1]   Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury [J].
Arvin, KL ;
Han, BH ;
Du, YS ;
Lin, SZ ;
Paul, SM ;
Holtzman, DM .
ANNALS OF NEUROLOGY, 2002, 52 (01) :54-61
[2]  
BERNARDI P, 1992, J BIOL CHEM, V267, P8834
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Two pathways for tBID-induced cytochrome c release from rat brain mitochondria:: BAK- versus BAX-dependence [J].
Brustovetsky, N ;
Dubinsky, JM ;
Antonsson, B ;
Jemmerson, R .
JOURNAL OF NEUROCHEMISTRY, 2003, 84 (01) :196-207
[5]   Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline [J].
Casarejos, MJ ;
Menéndez, J ;
Solano, RM ;
Rodríguez-Navarro, JA ;
García de Yébenes, J ;
Mena, MA .
JOURNAL OF NEUROCHEMISTRY, 2006, 97 (04) :934-946
[6]  
Cha JH, 2004, NEUROLOGY, V63, P547
[7]   The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria [J].
Chalmers, S ;
Nicholls, DG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (21) :19062-19070
[8]   Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease [J].
Chen, M ;
Ona, VO ;
Li, MW ;
Ferrante, RJ ;
Fink, KB ;
Zhu, S ;
Bian, J ;
Guo, L ;
Farrell, LA ;
Hersch, SM ;
Hobbs, W ;
Vonsattel, JP ;
Cha, JHJ ;
Friedlander, RM .
NATURE MEDICINE, 2000, 6 (07) :797-+
[9]   Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo [J].
Choi, SH ;
Lee, DY ;
Chung, ES ;
Hong, YB ;
Kim, SU ;
Jin, BK .
JOURNAL OF NEUROCHEMISTRY, 2005, 95 (06) :1755-1765
[10]   Lack of evidence of direct mitochondrial involvement in the neuroprotective effect of minocycline [J].
Cornet, S ;
Spinnewyn, B ;
Delaflotte, S ;
Charnet, C ;
Roubert, V ;
Favre, C ;
Hider, H ;
Chabrier, PE ;
Auguet, M .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2004, 505 (1-3) :111-119