Elucidating proximity magnetism through polarized neutron reflectometry and machine learning

被引:15
作者
Andrejevic, Nina [1 ,2 ]
Chen, Zhantao [1 ,3 ]
Thanh Nguyen [1 ,4 ]
Fan, Leon [5 ]
Heiberger, Henry [5 ]
Zhou, Ling-Jie [6 ]
Zhao, Yi-Fan [6 ]
Chang, Cui-Zu [6 ]
Grutter, Alexander [7 ]
Li, Mingda [1 ,4 ]
机构
[1] MIT, Quantum Measurement Grp, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[7] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
TOPOLOGICAL INSULATOR; PHASE; INTERFACE; ORDER;
D O I
10.1063/5.0078814
中图分类号
O59 [应用物理学];
学科分类号
摘要
Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge for parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator-ferromagnetic insulator heterostructure Bi2Se3/EuS exhibiting proximity magnetism in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator-antiferromagnet heterostructure (Bi,Sb)(2)Te-3/Cr2O3 and identify possible interfacial proximity magnetism in this material. We anticipate that the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems. (C) 2022 Author(s).
引用
收藏
页数:11
相关论文
共 80 条
[1]  
ABELES F, 1948, ANN PHYS-PARIS, V3, P504
[2]  
Akiyama R., 2019, ARXIV191010540
[3]  
Andrejevic N, GITHUB
[4]   Polarized-neutron reflectometry [J].
Ankner, JF ;
Felcher, GP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :741-754
[5]   Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry [J].
Aoki, Hiroyuki ;
Liu, Yuwei ;
Yamashita, Takashi .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures [J].
Behera, Sushant Kumar ;
Bora, Mayuri ;
Chowdhury, Sapta Sindhu Paul ;
Deb, Pritam .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (46) :25788-25796
[7]   Giant Controllable Magnetization Changes Induced by Structural Phase Transitions in a Metamagnetic Artificial Multiferroic [J].
Bennett, S. P. ;
Wong, A. T. ;
Glavic, A. ;
Herklotz, A. ;
Urban, C. ;
Valmianski, I. ;
Biegalski, M. D. ;
Christen, H. M. ;
Ward, T. Z. ;
Lauter, V. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Differentiation between strain and charge mediated magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(001) [J].
Bhatnagar-Schoeffmann, T. ;
Kentzinger, E. ;
Sarkar, A. ;
Schoeffmann, P. ;
Lan, Q. ;
Jin, L. ;
Kovacs, A. ;
Grutter, A. J. ;
Kirby, B. J. ;
Beerwerth, R. ;
Waschk, M. ;
Stellhorn, A. ;
Ruecker, U. ;
Dunin-Borkowski, R. E. ;
Brueckel, Th .
NEW JOURNAL OF PHYSICS, 2021, 23 (06)
[9]   Recent Progress in Proximity Coupling of Magnetism to Topological Insulators [J].
Bhattacharyya, Semonti ;
Akhgar, Golrokh ;
Gebert, Matthew ;
Karel, Julie ;
Edmonds, Mark T. ;
Fuhrer, Michael S. .
ADVANCED MATERIALS, 2021, 33 (33)
[10]   GenX:: an extensible X-ray reflectivity refinement program utilizing differential evolution [J].
Bjorck, Matts ;
Andersson, Gabriella .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :1174-1178