Quantum and thermal melting of stripe forming systems with competing long-range interactions

被引:13
作者
Mendoza-Coto, Alejandro [1 ]
Barci, Daniel G. [2 ]
Stariolo, Daniel A. [3 ,4 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Estado Rio de Janeiro, Dept Fis Teor, Rua Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Fluminense, Dept Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil
[4] Natl Inst Sci & Technol Complex Syst, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil
关键词
HIGH-TEMPERATURE SUPERCONDUCTORS; LIQUID-CRYSTAL PHASES; T-C SUPERCONDUCTOR; SMECTIC-A-PHASE; CUPRATE SUPERCONDUCTORS; FLUCTUATING STRIPES; MAGNETIC-FIELD; DIMENSIONS; ORDER; SCATTERING;
D O I
10.1103/PhysRevB.95.144209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum melting of stripe phases in models with competing short-range and long-range interactions decaying with distance as 1/r(sigma) in two space dimensions. At zero temperature we find a two step disordering of the stripe phases with the growth of quantum fluctuations. A quantum critical point separating a phase with long-range positional order from a phase with long-range orientational order is found when sigma <= 4/3, which includes the Coulomb interaction case sigma = 1. For sigma > 4/3 the transition is first order, which includes the dipolar case sigma = 3. Another quantum critical point separates the orientationally ordered (nematic) phase from a quantum disordered phase for any value of s. Critical exponents as a function of s are computed at one loop order in an epsilon expansion and, whenever available, compared with known results. For finite temperatures it is found that for sigma >= 2 orientational order decays algebraically with distance until a critical Kosterlitz-Thouless line. Nevertheless, for sigma < 2 it is found that long-range orientational order can exist at finite temperatures until a critical line which terminates at the quantum critical point at T = 0. The temperature dependence of the critical line near the quantum critical point is determined as a function of sigma .
引用
收藏
页数:15
相关论文
共 62 条
  • [1] PHASE-DIAGRAM OF ULTRATHIN FERROMAGNETIC-FILMS WITH PERPENDICULAR ANISOTROPY
    ABANOV, A
    KALATSKY, V
    POKROVSKY, VL
    SASLOW, WM
    [J]. PHYSICAL REVIEW B, 1995, 51 (02): : 1023 - 1038
  • [2] Amit D. J., 1978, FIELD THEORY RENORMA
  • [3] [Anonymous], 2011, QUANTUM PHASE TRANSI
  • [4] Density ordering instabilities of quasi-two-dimensional fermionic polar molecules in single-layer and multilayer configurations: Exact treatment of exchange interactions
    Babadi, Mehrtash
    Demler, Eugene
    [J]. PHYSICAL REVIEW B, 2011, 84 (23):
  • [5] Competing interactions, the renormalization group, and the isotropic-nematic phase transition
    Barci, Daniel G.
    Stariolo, Daniel A.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [6] Nematic phase in stripe-forming systems within the self-consistent screening approximation
    Barci, Daniel G.
    Mendoza-Coto, Alejandro
    Stariolo, Daniel A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):
  • [7] Role of nematic fluctuations in the thermal melting of pair-density-wave phases in two-dimensional superconductors
    Barci, Daniel G.
    Fradkin, Eduardo
    [J]. PHYSICAL REVIEW B, 2011, 83 (10)
  • [8] Orientational order in two dimensions from competing interactions at different scales
    Barci, Daniel G.
    Stariolo, Daniel A.
    [J]. PHYSICAL REVIEW B, 2009, 79 (07):
  • [9] Theory of the quantum Hall smectic phase. I. Low-energy properties of the quantum Hall smectic fixed point
    Barci, DG
    Fradkin, E
    Kivelson, SA
    Oganesyan, V
    [J]. PHYSICAL REVIEW B, 2002, 65 (24): : 2453191 - 24531914
  • [10] Beekman A. J., ARXIV160304254