BRAIN SOURCE LOCALIZATION USING A PHYSICS-DRIVEN STRUCTURED COS PARSE REPRESENTATION OF EEG SIGNALS

被引:0
作者
Albera, L. [1 ,2 ,3 ]
Kitic, S. [3 ]
Bertin, N. [4 ]
Puy, G. [3 ]
Gribonval, Remi [3 ]
机构
[1] INSERM, UMR 642, F-35000 Rennes, France
[2] Univ Rennes 1, LTSI, F-35000 Rennes, France
[3] Ctr Inria Rennes Bretagne Atlantique, Inria, F-35000 Rennes, France
[4] IRISA, CNRS, UMR 6074, F-35000 Rennes, France
来源
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2014年
基金
欧洲研究理事会;
关键词
Brain source localization; EEG; cosparsity; synchronous current activities;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Localizing several potentially synchronous brain activities with low signal-to-noise ratio from ElectroEncephaloGraphic (EEG) recordings is a challenging problem. In this paper we propose a novel source localization method, named CoRE, which uses a Cosparse Representation of EEG signals. The underlying analysis operator is derived from physical laws satisfied by EEG signals, and more particularly from Poisson's equation. In addition, we show how physiological constraints on sources, leading to a given space support and fixed orientations for current dipoles, can be taken into account in the optimization scheme. Computer results, aiming at showing the feasability of the CoRE technique, illustrate its superiority in terms of estimation accuracy over dictionary-based sparse methods and subspace approaches.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] Brain source localization using a fourth-order deflation scheme
    Albera, Laurent
    Ferreol, Anne
    Cosandier-Rimele, Delphine
    Merlet, Isabelle
    Wendling, Fabrice
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (02) : 490 - 501
  • [2] [Anonymous], 1999, NUMERICAL OPTIMIZATI
  • [3] Bach F, 2012, OPTIMIZATION FOR MACHINE LEARNING, P19
  • [4] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [5] Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations
    Gramfort, A.
    Strohmeier, D.
    Haueisen, J.
    Haemaelaeinen, M. S.
    Kowalski, M.
    [J]. NEUROIMAGE, 2013, 70 : 410 - 422
  • [6] Review on solving the inverse problem in EEG source analysis
    Grech, Roberta
    Cassar, Tracey
    Muscat, Joseph
    Camilleri, Kenneth P.
    Fabri, Simon G.
    Zervakis, Michalis
    Xanthopoulos, Petros
    Sakkalis, Vangelis
    Vanrumste, Bart
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2008, 5 (1)
  • [7] ELECTROENCEPHALOGRAM AND VISUAL-EVOKED POTENTIAL GENERATION IN A MATHEMATICAL-MODEL OF COUPLED CORTICAL COLUMNS
    JANSEN, BH
    RIT, VG
    [J]. BIOLOGICAL CYBERNETICS, 1995, 73 (04) : 357 - 366
  • [8] KITIC S., 2013, GRETSI 13
  • [9] Comparing iterative solvers for linear systems associated with the finite difference discretisation of the forward problem in electro-encephalographic source analysis
    Mohr, M
    Vanrumste, B
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2003, 41 (01) : 75 - 84
  • [10] Source localization using recursively applied and projected (RAP) MUSIC
    Mosher, JC
    Leahy, RM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (02) : 332 - 340