共 49 条
Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy
被引:44
作者:
Shin, Meong Cheol
[1
,2
]
Zhang, Jian
[3
,4
]
Min, Kyoung Ah
[2
]
Lee, Kyuri
[2
]
Moon, Cheol
[5
]
Balthasar, Joseph P.
[6
]
Yang, Victor C.
[1
,2
]
机构:
[1] Tianjin Med Univ, Sch Pharm, Tianjin Key Lab Technol Enabling Dev Clin Therape, Tianjin 300070, Peoples R China
[2] Univ Michigan, Coll Pharm, Dept Pharmaceut Sci, Ann Arbor, MI 48109 USA
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Dept Polymer Sci & Engn, Biomed Polymers Lab, Suzhou 215123, Peoples R China
[4] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Dept Polymer Sci & Engn, Jiangsu Key Lab Adv Funct Polymer Design & Applic, Suzhou 215123, Peoples R China
[5] Sunchon Natl Univ, Coll Pharm, Sunchon 540950, Jeonnam, South Korea
[6] SUNY Buffalo, Sch Pharm & Pharmaceut Sci, Dept Pharmaceut Sci, Buffalo, NY 14260 USA
基金:
美国国家卫生研究院;
关键词:
Gelonin;
Protein transduction domain;
Anti-CEA monoclonal antibody;
Heparin;
Cancer;
RIBOSOME-INACTIVATING PROTEINS;
CELL-PENETRATING PEPTIDES;
CEA ANTIBODY;
CARCINOEMBRYONIC ANTIGEN;
IN-VITRO;
PHASE-I;
GELONIN;
T84.66;
5-FLUOROURACIL;
TRANSDUCTION;
D O I:
10.1016/j.jconrel.2014.08.030
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The bottlenecks of current chemotherapy in the treatment of colorectal cancer lie in the ineffectiveness of the existing anti-cancer small molecule drugs as well as the dose-limiting toxicity caused by the nonselective action on normal tissues by such drugs. To address these problems, we introduce a novel therapeutic strategy based on tumor targeting using a non-internalizing anti-carcinoembryonic antigen (CEA) monoclonal antibody(mAb) and intracellular delivery of the extremely potent yet cell-impermeable protein toxin gelonin via the aid of a cell-penetrating peptide (also termed as protein transduction domain; PTD). A chimeric TAT-gelonin fusion protein was genetically engineered, and it displayed remarkably enhanced anti-cancer activity against human colorectal cancer cells, with IC50 values being several orders of magnitude lower than the unmodified gelonin. On the other hand, a chemically synthesized conjugate of heparin and a murine anti-CEA mAb, T84.66 (termed T84.66-Hep) was found able to bind highly specifically to CEA over-expressing LS174T colorectal cancer cells. When mixing together, TAT-gelonin and T84.66-Hep could associate tightly and automatically through an electrostatic interaction between the cationic TAT and anionic heparin. In preliminary in vivo studies using LS174T s.c. xenograft tumor bearing mouse, selective and significantly augmented (58-fold) delivery of TAT-gelonin to the tumor target was observed, when compared with administration of TAT-gelonin alone. More importantly, efficacy studies also revealed that only the TAT-gelonin/T84.66-Hep complex yielded a significant inhibition of tumor growth (46%) without causing gelonin-induced systemic toxicity. Overall, this study suggested a generic strategy to effectively yet safely deliver potent PTD-modified protein toxins to the tumor. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 210
页数:14
相关论文