Segmenting White Matter Hyperintensity in Alzheimer's Disease using U-Net CNNs

被引:3
作者
Duarte, Kaue T. N. [1 ,2 ]
Gobbi, David G. [1 ,2 ]
Sidhu, Abhijot S. [3 ,4 ]
McCreary, Cheryl R. [1 ,4 ]
Saad, Feryal [1 ]
Das, Nita [1 ,4 ]
Smith, Eric E. [1 ]
Frayne, Richard [1 ,2 ,3 ,4 ]
机构
[1] Univ Calgary, Hotchkiss Brain Inst, Radiol & Clin Neurosci, Calgary, AB T2N IN4, Canada
[2] Foothills Med Ctr, Calgary Image Proc & Anal Ctr, Calgary, AB T2N 2T9, Canada
[3] Univ Calgary, Biomed Engn Grad Program, Calgary, AB T2N IN4, Canada
[4] Foothills Med Ctr, Seaman Family MR Res Ctr, Calgary, AB T2N 2T9, Canada
来源
2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022) | 2022年
基金
加拿大创新基金会;
关键词
SEGMENTATION;
D O I
10.1109/SIBGRAPI55357.2022.9991752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
White-matter hyperintensity (WMH) is associated with many disorders where it is suggestive of underlying cerebrovascular, small-vessel disease pathology. However, its role in Alzheimer's disease (AD), mixed, and vascular dementia remains an open area of research. The fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) imaging sequence is commonly used to visualize WMH because it provides good image contrast, not only between WMH and normal tissue, but also between WMH and cerebrospinal fluid. Manual segmentation of WMH lesions in brain volumes, on a slice-by-slice basis, is time-consuming with high inter-rater variability, however, this process remains the broadly accepted gold standard. In this study, variations of 2D, 2.5D and 3D U-shaped convolutional neural networks (U-Net CNNs) were used to perform semantic segmentation on FLAIR images. We evaluated these models in brain volumes obtained from 186 individuals from one of three disease classes: healthy normal (N = 94), mild cognitive impairment (N = 55), and AD (N = 37). Four common architectures (VGG16, VGG19, ResNet and EfficientNetB0) were employed as feature extractors. Results were assessed across the whole brain and by brain region (frontal, occipital, parietal, temporal lobes plus the insula) to identify differences in performance. In general, the predicted WMH volumes had an F-measure score >95% on the test data compared to manual segmentation. This work identified that 2.5D with either VGG16 or VGG19 was the most suitable configuration when segmenting WMH. WMH segmentation performance and measured volume was found to vary between regions and disease classes. U-Net CNN architectures have good performance and may provide valuable insights about the white matter pathology.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 19 条
[1]   Regional white matter hyperintensities: aging, Alzheimer's disease risk, and cognitive function [J].
Birdsill, Alex C. ;
Koscik, Rebecca L. ;
Jonaitis, Erin M. ;
Johnson, Sterling C. ;
Okonkwo, Ozioma C. ;
Hermann, Bruce P. ;
Larue, Asenath ;
Sager, Mark A. ;
Bendlin, Barbara B. .
NEUROBIOLOGY OF AGING, 2014, 35 (04) :769-776
[2]   White Matter Hyperintensities in Alzheimer's Disease: A Lesion Probability Mapping Study [J].
Damulina, Anna ;
Pirpamer, Lukas ;
Seiler, Stephan ;
Benke, Thomas ;
Dal-Bianco, Peter ;
Ransmayr, Gerhard ;
Struhal, Walter ;
Hofer, Edith ;
Langkammer, Christian ;
Duering, Marco ;
Fazekas, Franz ;
Schmidt, Reinhold .
JOURNAL OF ALZHEIMERS DISEASE, 2019, 68 (02) :789-796
[3]   Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging [J].
Duong, M. T. ;
Rudie, J. D. ;
Wang, J. ;
Xie, L. ;
Mohan, S. ;
Gee, J. C. ;
Rauschecker, A. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (08) :1282-1290
[4]   Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain [J].
Fischl, B ;
Salat, DH ;
Busa, E ;
Albert, M ;
Dieterich, M ;
Haselgrove, C ;
van der Kouwe, A ;
Killiany, R ;
Kennedy, D ;
Klaveness, S ;
Montillo, A ;
Makris, N ;
Rosen, B ;
Dale, AM .
NEURON, 2002, 33 (03) :341-355
[5]  
Gobbi D., 2012, CANADIAN STROKE C, V40, pE128
[6]   White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks [J].
Guerrero, R. ;
Qin, C. ;
Oktay, O. ;
Bowles, C. ;
Chen, L. ;
Joules, R. ;
Wolz, R. ;
Valdes-Hernandez, M. C. ;
Dickie, D. A. ;
Wardlaw, J. ;
Rueckert, D. .
NEUROIMAGE-CLINICAL, 2018, 17 :918-934
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage [J].
Kosior, Jayme C. ;
Idris, Sherif ;
Dowlatshahi, Dar ;
Alzawahmah, Mohamed ;
Eesa, Muneer ;
Sharma, Pranshu ;
Tymchuk, Sarah ;
Hill, Michael D. ;
Aviv, Richard I. ;
Frayne, Richard ;
Demchuk, Andrew M. .
INTERNATIONAL JOURNAL OF STROKE, 2011, 6 (04) :302-305
[9]   Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge [J].
Kuijf, Hugo J. ;
Biesbroek, J. Matthijs ;
de Bresser, Jeroen ;
Heinen, Rutger ;
Andermatt, Simon ;
Bento, Mariana ;
Berseth, Matt ;
Belyaev, Mikhail ;
Cardoso, M. Jorge ;
Casamitjana, Adria ;
Collins, D. Louis ;
Dadar, Mahsa ;
Georgiou, Achilleas ;
Ghafoorian, Mohsen ;
Jin, Dakai ;
Khademi, April ;
Knight, Jesse ;
Li, Hongwei ;
Llado, Xavier ;
Luna, Miguel ;
Mahmood, Qaiser ;
McKinley, Richard ;
Mehrtash, Alireza ;
Ourselin, Sebastien ;
Park, Bo-Yong ;
Park, Hyunjin ;
Park, Sang Hyun ;
Pezold, Simon ;
Puybareau, Elodie ;
Rittner, Leticia ;
Sudre, Carole H. ;
Valverde, Sergi ;
Vilaplana, Veronica ;
Wiest, Roland ;
Xu, Yongchao ;
Xu, Ziyue ;
Zeng, Guodong ;
Zhang, Jianguo ;
Zheng, Guoyan ;
Chen, Christopher ;
van der Flier, Wiesje ;
Barkhof, Frederik ;
Viergever, Max A. ;
Biessels, Geert Jan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2556-2568
[10]  
Li X., 2021, HUM BRAIN MAPP