共 32 条
Computational chemistry modeling and design of photoswitchable alignment materials for optically addressable liquid crystal devices
被引:2
作者:
Marshall, K. L.
[1
]
Sekera, E. R.
[1
]
Xiao, K.
[1
]
机构:
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
来源:
LIQUID CRYSTALS XIX
|
2015年
/
9565卷
关键词:
Photoalignment materials;
optically switchable;
liquid crystal;
azobenzene;
spiropyran;
computational modeling;
density functional theory;
beam shapers;
laser-damage threshold;
DENSITY-FUNCTIONAL THEORY;
PHOTOALIGNMENT;
STATES;
D O I:
10.1117/12.2188287
中图分类号:
O7 [晶体学];
学科分类号:
0702 ;
070205 ;
0703 ;
080501 ;
摘要:
Photoalignment technology based on optically switchable "command surfaces" has been receiving increasing interest for liquid crystal optics and photonics device applications. Azobenzene compounds in the form of low-molar-mass, water-soluble salts deposited either directly on the substrate surface or after dispersion in a polymer binder have been almost exclusively employed for these applications, and ongoing research in the area follows a largely empirical materials design and development approach. Recent computational chemistry advances now afford unprecedented opportunities to develop predictive capabilities that will lead to new photoswitchable alignment layer materials with low switching energies, enhanced bistability, write/erase fatigue resistance, and high laser-damage thresholds. In the work described here, computational methods based on the density functional theory and time-dependent density functional theory were employed to study the impact of molecular structure on optical switching properties in photoswitchable methacrylate and acrylamide polymers functionalized with azobenzene and spiropyran pendants.
引用
收藏
页数:15
相关论文
共 32 条