The Ricci curvature of finite dimensional approximations to loop and path groups

被引:0
|
作者
Cecil, Matthew [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2009年 / 133卷 / 04期
关键词
Path group; Loop group; Ricci curvature; QUASI-INVARIANCE; SPACE;
D O I
10.1016/j.bulsci.2008.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W(G) and C(G) denote the path and loop groups respectively of a connected real unimodular Lie group G endowed with a left-invariant Riemannian metric. We study the Ricci curvature of certain finite dimensional approximations to these groups based on partitions of the interval vertical bar 0, 1 vertical bar. We find that the Ricci curvatures of the finite dimensional approximations are bounded below independent of partition iff G is of compact type with an Ad-invariant metric. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:383 / 405
页数:23
相关论文
共 30 条