TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification; performance and antifouling properties

被引:26
|
作者
Izadmehr, Neda [1 ]
Mansourpanah, Yaghoub [1 ]
Ulbricht, Mathias [2 ]
Rahimpour, Ahmad [3 ]
Omidkhah, Mohammad Reza [4 ]
机构
[1] Lorestan Univ, Membrane Res Lab, Khorramabad 6813717133, Iran
[2] Univ Duisburg Essen, Lehrstuhl Tech Chem 2, D-45117 Essen, Germany
[3] Babol Noshirvani Univ Technol, Sch Chem Engn, Membrane Res Lab, Babol, Iran
[4] Tarbiat Modares Univ, Dept Chem Engn, Tehran 141554838, Iran
关键词
Nanofiltration nanocomposite membrane; Covalently-functionalized GO; Antifouling and performance; Dye removal; REVERSE-OSMOSIS MEMBRANE; CARBON NANOTUBES; HIGH-FLUX; SEPARATION; FABRICATION; FUNCTIONALIZATION; ADSORPTION; CHITOSAN; REMOVAL; SHEETS;
D O I
10.1016/j.jenvman.2020.111299
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work investigates the performance and structure of polyamide thin film nanocomposite (PA-TFN) membrane incorporated with triethylenetetramine-modified graphene oxide (GO-TETA). The embedment of GO-TETA nanosheets within the structure of PA-TFN membrane was evaluated at different concentrations (0.005, 0.01, 0.03 wt%; in aqueous piperazine (PIP)) through interfacial polymerization (IP). The physicochemical properties of the prepared membrane were investigated by SEM, AFM, water contact angle, and zeta potential as well as ATR-IR spectroscopy. The presence of longer chains of amino groups (in comparison with the directly linked amino ones) among the stacked GO nanosheets was assumed to increase interlayer spacing, resulting in remarkable changes in water permeance and separation behavior of modified polyamide (PA) membrane. It is seen that GO-TETA nanosheets were uniformly distributed in the matrix of PA layer. With increasing the concentration of GO-TETA, the flux of TFN membranes under 6 bar was increased from 49.8 l/m(2) h (no additive) to 73.2 l/m(2) h (TFN comprising 0.03 wt% GO-TETA. In addition, more loading GO-TETA resulted in a significant decrease in the average thickness of the polyamide layer from-380 to-150 nm. Furthermore, addition of GOTETA improved the hydrophilicity of nanocomposite membranes, resulting in superb water flux recovery (antifouling indicator) as high as 95% after filtration of bovine serum albumin solution. Also, the retention capability of the TFN membranes towards some textile dyes increased as high as 99.6%.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Ionic Liquid-Reduced Graphene Oxide Membrane with Enhanced Stability for Water Purification
    Zambare, Rahul S.
    Song, Xiaoxiao
    Bhuvana, S.
    Tang, Chuyang Y.
    Prince, J. S. Antony
    Nemade, Parag R.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (38) : 43339 - 43353
  • [32] A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification
    Dong, Liangliang
    Fan, Weizheng
    Tong, Xia
    Zhang, Hongji
    Chen, Mingqing
    Zhao, Yue
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (16) : 6785 - 6791
  • [33] Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer
    Zhao, Bin
    Guo, Zhiqiang
    Wang, Hongli
    Wang, Liang
    Qian, Yiran
    Long, Xingli
    Ma, Cong
    Zhang, Zhaohui
    Li, Junjing
    Zhang, Hongwei
    JOURNAL OF MEMBRANE SCIENCE, 2021, 625
  • [34] High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification
    Chen, Long
    Moon, Jung-Hyeon
    Ma, Xiaoxin
    Zhang, Lin
    Chen, Qiong
    Chen, Lina
    Peng, Ruiqin
    Si, Pengchao
    Feng, Jinkui
    Li, Yanhui
    Lou, Jun
    Ci, Lijie
    CARBON, 2018, 130 : 487 - 494
  • [35] Fabrication of thin-film composite polyamide nanofiltration membrane based on polyphenol intermediate layer with enhanced desalination performance
    Sun, Haixiang
    Liu, Jiahui
    Luo, Xubing
    Chen, Yuhao
    Jiang, Chi
    Zhai, Zhe
    Niu, Q. Jason
    DESALINATION, 2020, 488
  • [36] Thin-film nanocomposite nanofiltration membrane with enhanced desalination and antifouling performance via incorporating L-aspartic acid functionalized graphene quantum dots
    Wu, Chenpu
    Xie, Quanling
    Hong, Zhuan
    Shen, Lufang
    Yu, Tong
    Guo, Honghui
    Xiong, Ying
    Zhang, Guoliang
    Lu, Yinghua
    Shao, Wenyao
    DESALINATION, 2021, 498
  • [37] Surface modification of thin film composite nanofiltration membrane with graphene oxide by varying amine linkers: Synthesis, characterization, and applications
    Vaishnavi, P. S. V.
    Kar, Soumitra
    Adak, A. K.
    Nagar, Vandan
    Singh, Vishal
    Debnath, A. K.
    Nemade, Parag R.
    JOURNAL OF MEMBRANE SCIENCE, 2023, 687
  • [38] Multifunctional Thin-Film Nanofiltration Membrane Incorporated with Reduced Graphene Oxide@TiO2@Ag Nanocomposites for High Desalination Performance, Dye Retention, and Antibacterial Properties
    Abadikhah, Hamidreza
    Kalali, Ehsan Naderi
    Khodi, Samaneh
    Xu, Xin
    Agathopoulos, Simeon
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (26) : 23535 - 23545
  • [39] Improved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGO
    Li, Hongbin
    Zhang, Haixia
    Qin, Xiaohong
    Shi, Wenying
    APPLIED SURFACE SCIENCE, 2017, 407 : 260 - 275
  • [40] Effect of β-alanine modified graphene oxide on separation properties of thin film nanocomposite membrane in water desalination
    Bozorgi, Pantea
    Naji, Leila
    Valizadeh, Solmaz
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 687