Low-power thermo-optic silicon modulator for large-scale photonic integrated systems

被引:98
作者
Chung, Sungwon [1 ]
Nakai, Makoto [1 ]
Hashemi, Hossein [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90089 USA
来源
OPTICS EXPRESS | 2019年 / 27卷 / 09期
关键词
OPTICAL PHASED-ARRAY; ON-INSULATOR; SWITCH; WAVELENGTH; COMPACT; RESONATORS; EFFICIENT; CHIP;
D O I
10.1364/OE.27.013430
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Silicon platform enables the monolithic realization of large-scale photonic integrated systems. Many emerging applications facilitated by silicon photonics such as optical biosensing, optical neurostimulation, optical phased arrays, holographic displays, 3D cameras, optical machine learning, and optical quantum information processing systems require the integration of a large number of optical phase modulators with modest modulation speed. Classical optical modulators are not suitable for such large-scale integration because of their inability to provide low optical loss, compact size, high efficiency, and wide optical bandwidth, all at the same time. We report a thermo-optic silicon modulator realized in a 0.0023-mm(2) silicon footprint of a commercial foundry silicon photonics process. The optical modulator consumes 2.56 mW for 180 degrees phase modulation over 100-nm optical bandwidth while achieving 1.23-dB optical loss without air-gap trench or silicon undercut post-processing. Geometrical design optimization, at the core of this demonstration, is applicable to the realization of compact thermo-optic devices for large-scale programmable photonic integrated systems, with a potential to reduce power consumption roughly by an order of magnitude without sacrificing scalability and optical modulation bandwidth. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:13430 / 13459
页数:30
相关论文
共 70 条
[1]   Monolithic optical phased-array transceiver in a standard SOI CMOS process [J].
Abediasl, Hooman ;
Hashemi, Hossein .
OPTICS EXPRESS, 2015, 23 (05) :6509-6519
[2]   Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform [J].
Bahadori, Meisam ;
Gazman, Alexander ;
Janosik, Natalie ;
Rumley, Sebastien ;
Zhu, Ziyi ;
Polster, Robert ;
Cheng, Qixiang ;
Bergman, Keren .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (03) :773-788
[3]  
Blasjo V., 2007, TRANSCENDENTAL CURVE
[4]   Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J].
Bogaerts, W ;
Baets, R ;
Dumon, P ;
Wiaux, V ;
Beckx, S ;
Taillaert, D ;
Luyssaert, B ;
Van Campenhout, J ;
Bienstman, P ;
Van Thourhout, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :401-412
[5]  
Celo D, 2016, OPT INTERCONNECT C, P26, DOI 10.1109/OIC.2016.7482994
[6]  
Chang Y.-C., 2017, RESONANCE FREE LIGHT
[7]   Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform [J].
Cherchi, Matteo ;
Ylinen, Sami ;
Harjanne, Mikko ;
Kapulainen, Markku ;
Aalto, Timo .
OPTICS EXPRESS, 2013, 21 (15) :17814-17823
[8]  
Chung S., 2018, C LAS EL CLEO
[9]   A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS [J].
Chung, SungWon ;
Abediasl, Hooman ;
Hashemi, Hossein .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (01) :275-296
[10]   THERMOOPTIC MODULATION AT 1.5 MU-M IN SILICON ETALON [J].
COCORULLO, G ;
RENDINA, I .
ELECTRONICS LETTERS, 1992, 28 (01) :83-85