Relationship between the edge-Wiener index and the Gutman index of a graph

被引:29
|
作者
Knor, Martin [1 ]
Potocnik, Primoz [2 ,3 ]
Skrekovski, Riste [2 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Univ Primorska, IAM, Koper 6000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Wiener index; Edge-Wiener index; Gutman index; Topological index; Molecular descriptor; Line graph; LINE GRAPHS; DISTANCE;
D O I
10.1016/j.dam.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(G) of a connected graph G is defined to be the sum Sigma(u,v) d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum Sigma(e,f) d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum Sigma(u,v) deg(u) deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that W-e(G) >= 1/4Gut(G) - 1/4 vertical bar E(G)vertical bar + 3/4 kappa(3)(G) + 3 kappa(4)(G) where kappa(m)(G) denotes the number of all m-cliques in G. Moreover, the equality holds if and only if G is a tree or a complete graph. Using this result we show that W-e(G) >= delta(2)-1/4W(G) where delta denotes the minimum degree in G. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [31] On the Gutman index and minimum degree
    Mazorodze, Jaya Percival
    Mukwembi, Simon
    Vetrik, Tomas
    DISCRETE APPLIED MATHEMATICS, 2014, 173 : 77 - 82
  • [32] ON WIENER INDEX OF GRAPH COMPLEMENTS
    Senbagamalar, J.
    Babujee, J. Baskar
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (02) : 11 - 15
  • [33] Proof of a conjecture on Wiener index and eccentricity of a graph due to edge contraction
    Das, Joyentanuj
    Jana, Ritabrata
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 19 - 21
  • [34] Wiener index condition for a bipartite graph to be Hamiltonian
    Ai Xiao-Wei
    UTILITAS MATHEMATICA, 2013, 91 : 81 - 85
  • [35] Computing a new edge-Wiener index of TUC4C8(S) nanotubes and TUC4C8(R) nanotorus
    Karimi, A.
    Iranmanesh, A.
    Tehranian, A.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (11): : 1856 - 1859
  • [36] Selected topics on Wiener index
    Knor, Martin
    Skrekovski, Riste
    Tepeh, Aleksandra
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (04)
  • [37] Mathematical aspects of Wiener index
    Knor, Martin
    Skrekovski, Riste
    Tepeh, Aleksandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 327 - 352
  • [38] On the Wiener Index of Some Edge Deleted Graphs
    Durgi, B. S.
    Ramane, H. S.
    Hampiholi, P. R.
    Mekkalike, S. M.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (02): : 139 - 148
  • [39] The Wiener Index and the Wiener Complexity of the Zero-Divisor Graph of a Ring
    Dolzan, David
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (01)
  • [40] Relation between Degree Distance and Gutman Index of Graphs
    Das, Kinkar Ch.
    Su, Guifu
    Xiong, Liming
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 76 (01) : 221 - 232