Relationship between the edge-Wiener index and the Gutman index of a graph

被引:29
|
作者
Knor, Martin [1 ]
Potocnik, Primoz [2 ,3 ]
Skrekovski, Riste [2 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Univ Primorska, IAM, Koper 6000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Wiener index; Edge-Wiener index; Gutman index; Topological index; Molecular descriptor; Line graph; LINE GRAPHS; DISTANCE;
D O I
10.1016/j.dam.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(G) of a connected graph G is defined to be the sum Sigma(u,v) d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum Sigma(e,f) d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum Sigma(u,v) deg(u) deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that W-e(G) >= 1/4Gut(G) - 1/4 vertical bar E(G)vertical bar + 3/4 kappa(3)(G) + 3 kappa(4)(G) where kappa(m)(G) denotes the number of all m-cliques in G. Moreover, the equality holds if and only if G is a tree or a complete graph. Using this result we show that W-e(G) >= delta(2)-1/4W(G) where delta denotes the minimum degree in G. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [21] Computation of the first edge-Wiener index of TUAC6[P,Q] nanotube
    Iranmanesh, Ali
    Kafrani, Abolghasem Soltani
    Khormali, Omid
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (02): : 242 - 251
  • [22] THE STEINER WIENER INDEX OF A GRAPH
    Li, Xueliang
    Mao, Yaping
    Gutman, Ivan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 455 - 465
  • [23] ON THE HOSOYA POLYNOMIAL AND WIENER INDEX OF JUMP GRAPH
    Mirajkar, Keerthi G.
    Pooja, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (01): : 37 - 59
  • [24] On the relation between Wiener index and eccentricity of a graph
    Darabi, Hamid
    Alizadeh, Yaser
    Klavzar, Sandi
    Das, Kinkar Chandra
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (04) : 817 - 829
  • [25] On the relation between Wiener index and eccentricity of a graph
    Hamid Darabi
    Yaser Alizadeh
    Sandi Klavžar
    Kinkar Chandra Das
    Journal of Combinatorial Optimization, 2021, 41 : 817 - 829
  • [26] On the relationship between variable Wiener index and variable Szeged index?
    Cambie, Stijn
    Haslegrave, John
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 431
  • [27] The Wiener index of the kth power of a graph
    An, Xinhui
    Wu, Baoyindureng
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 436 - 440
  • [28] Wiener index of a type of composite graph
    Hu, Mingjun
    ARS COMBINATORIA, 2012, 106 : 59 - 64
  • [29] ON THE ECCENTRIC CONNECTIVITY INDEX AND WIENER INDEX OF A GRAPH
    Dankelmann, P.
    Morgan, M. J.
    Mukwembi, S.
    Swart, H. C.
    QUAESTIONES MATHEMATICAE, 2014, 37 (01) : 39 - 47
  • [30] Wiener index, Harary index and graph properties
    Feng, Lihua
    Zhu, Xiaomin
    Liu, Weijun
    DISCRETE APPLIED MATHEMATICS, 2017, 223 : 72 - 83