ON H(div)-CONFORMING METHODS FOR DOUBLE-DIFFUSION EQUATIONS IN POROUS MEDIA

被引:14
作者
Burger, Raimund [1 ,2 ]
Mendez, Paul E. [1 ,2 ]
Ruiz-Baier, Ricardo [3 ]
机构
[1] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[3] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
viscous flow in porous media; doubly diffusive problems; cross diffusion; mixed finite element methods; a priori error estimation; fixed-point theory; FINITE-ELEMENT-METHOD; DISCONTINUOUS GALERKIN METHODS; NATURAL-CONVECTION; PHASE-CHANGE; MODEL; FLOW; STABILITY; SORET; HEAT;
D O I
10.1137/18M1196108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stationary Navier-Stokes-Brinkman problem coupled to a system of advection-diffusion equations serves as a model for so-called double-diffusive viscous flow in porous media in which both heat and a solute within the fluid phase are subject to transport and diffusion. The solvability analysis of these governing equations results as a combination of compactness arguments and fixed-point theory. In addition an H (div)-conforming discretization is formulated by a modification of existing methods for Brinkman flows. The well-posedness of the discrete Galerkin formulation is also discussed, and convergence properties are derived rigorously. Computational tests con firm the predicted rates of error decay and illustrate the applicability of the methods for the simulation of bacterial bioconvection and thermohaline circulation problems.
引用
收藏
页码:1318 / 1343
页数:26
相关论文
共 46 条
[1]   Numerical analysis of reaction front propagation model under Boussinesq approximation [J].
Agouzal, A ;
Allali, K .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (18) :1529-1572
[2]  
Allali K, 2005, INT J NUMER ANAL MOD, V2, P179
[3]   A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem [J].
Allendes, Alejandro ;
Barrenechea, Gabriel R. ;
Naranjo, Cesar .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 :90-120
[4]  
Alnaes MS., 2015, Archive of numerical software, V3, P1, DOI [10.11588/ans. 2015.100.20553, DOI 10.11588/ANS.2015.100.20553]
[5]   New Mixed Finite Element Methods for Natural Convection with Phase-Change in Porous Media [J].
Alvarez, Mario ;
Gatica, Gabriel N. ;
Gomez-Vargas, Bryan ;
Ruiz-Baier, Ricardo .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) :141-174
[6]   A mixed-primal finite element approximation of a sedimentation-consolidation system [J].
Alvarez, Mario ;
Gatica, Gabriel N. ;
Ruiz-Baier, Ricardo .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (05) :867-900
[7]   AN AUGMENTED MIXED-PRIMAL FINITE ELEMENT METHOD FOR A COUPLED FLOW-TRANSPORT PROBLEM [J].
Alvarez, Mario ;
Gatica, Gabriel N. ;
Ruiz-Baier, Ricardo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05) :1399-1427
[8]   ON A VORTICITY-BASED FORMULATION FOR REACTION-DIFFUSION-BRINKMAN SYSTEMS [J].
Anaya, Veronica ;
Bendahmane, Mostafa ;
Mora, David ;
Baier, Ricardo Ruiz .
NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (01) :69-94
[9]  
[Anonymous], 1991, SPRINGER SER COMPUT
[10]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779