Scattered data interpolation subject to piecewise quadratic range restrictions

被引:16
作者
Herrmann, M
Mulansky, B
Schmidt, JW
机构
[1] DAIMLER BENZ AG,FORSCH & TECH,VERKEHRSTHEORIE F1V VT,D-12274 BERLIN,GERMANY
[2] TECH UNIV DRESDEN,INST NUMER MATH,D-01062 DRESDEN,GERMANY
关键词
range restricted interpolation of scattered data; piecewise quadratic obstacles; Powell-Sabin splines; minimum norm modification; thin plate functional; block relaxation method;
D O I
10.1016/0377-0427(96)00044-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The construction of range restricted univariate and bivariate C-1 interpolants to scattered data is considered. In particular, we deal with quadratic spline interpolation on a refined univariate grid (respectively on a Powell-Sabin refinement of a triangulation of the data sites) subject to piecewise quadratic lower and upper obstacles to the values of the interpolant. The derived sufficient conditions for the fulfillment of the range restrictions result in a system of linear inequalities for the slopes (respectively gradients) as parameters, which is separated with respect to the data sites. This system is shown to be always solvable for important special forms of the obstacles. If at all, in general there exist an infinite number of spline interpolants meeting the constraints. The selection of a visually pleasant one is based on the minimization of a suitable choice functional.
引用
收藏
页码:209 / 223
页数:15
相关论文
共 18 条
[1]   CONSTRAINED INTERPOLANTS WITH MINIMAL WK,P-NORM [J].
ANDERSSON, LE ;
IVERT, PA .
JOURNAL OF APPROXIMATION THEORY, 1987, 49 (03) :283-288
[2]   BEST CONSTRAINED APPROXIMATION IN HILBERT-SPACE AND INTERPOLATION BY CUBIC-SPLINES SUBJECT TO OBSTACLES [J].
ANDERSSON, LE ;
ELFVING, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1209-1232
[3]   NONNEGATIVE QUADRATIC BEZIER TRIANGULAR PATCHES [J].
CHANG, GZ ;
SEDERBERG, TW .
COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (01) :113-116
[4]  
DAHMEN W, 1990, APPROX THEORY APPL, V6, P6
[5]   BEST INTERPOLATION IN A STRIP [J].
DONTCHEV, AL .
JOURNAL OF APPROXIMATION THEORY, 1993, 73 (03) :334-342
[6]  
Glowinski R, 1984, NUMERICAL METHODS NO
[7]  
Goodman T. N. T., 1991, NURBS CURVE SURFACE, P59
[8]  
HERRMANN M, 1995, THESIS TU DRESDEN
[9]   POSITIVE HERMITE INTERPOLATION BY QUADRATIC SPLINES [J].
LAHTINEN, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :223-233
[10]   Constructive methods in convex C-2 interpolation using quartic splines [J].
Mulansky, B ;
Schmidt, JW .
NUMERICAL ALGORITHMS, 1996, 12 (1-2) :111-124