Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites

被引:114
作者
Park, Wonjun [1 ,2 ]
Hu, Jiuning [1 ,2 ]
Jauregui, Luis A. [1 ,2 ]
Ruan, Xiulin [2 ,3 ]
Chen, Yong P. [1 ,2 ,4 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
INTERFACE MATERIALS; CHEMICAL-REDUCTION; OXIDE; PERFORMANCE; FILMS; HEAT;
D O I
10.1063/1.4869026
中图分类号
O59 [应用物理学];
学科分类号
摘要
The author reports an experimental study of electrical and thermal transport in reduced graphene oxide (RGO)/polystyrene (PS) composites. The electrical conductivity (sigma) of RGO/PS composites with different RGO concentrations at room temperature shows a percolation behavior with the percolation threshold of similar to 0.25 vol. %. Their temperature-dependent electrical conductivity follows Efros-Shklovskii variable range hopping conduction in the temperature range of 30-300K. The thermal conductivity (kappa) of composites is enhanced by similar to 90% as the concentration is increased from 0 to 10 vol. %. The thermal conductivity of composites approximately linearly increases with increasing temperature from 150 to 300 K. Composites with a higher concentration show a stronger temperature dependence in the thermal conductivity. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 34 条
[1]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[2]   Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons [J].
Chitara, Basant ;
Panchakarla, L. S. ;
Krupanidhi, S. B. ;
Rao, C. N. R. .
ADVANCED MATERIALS, 2011, 23 (45) :5419-+
[3]   Experimental evidence for Efros-Shklovskii variable range hopping in hydrogenated graphene [J].
Chuang, Chiashain ;
Puddy, R. K. ;
Lin, Huang-De ;
Lo, Shun-Tsung ;
Chen, T. -M. ;
Smith, C. G. ;
Liang, C. -T. .
SOLID STATE COMMUNICATIONS, 2012, 152 (10) :905-908
[4]  
Chung DDL, 2000, POLYM POLYM COMPOS, V8, P219
[5]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[6]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[7]   Electronic transport properties of individual chemically reduced graphene oxide sheets [J].
Gomez-Navarro, Cristina ;
Weitz, R. Thomas ;
Bittner, Alexander M. ;
Scolari, Matteo ;
Mews, Alf ;
Burghard, Marko ;
Kern, Klaus .
NANO LETTERS, 2007, 7 (11) :3499-3503
[8]   Performance and testing of thermal interface materials [J].
Gwinn, JP ;
Webb, RL .
MICROELECTRONICS JOURNAL, 2003, 34 (03) :215-222
[9]  
Ho C.Y., 1972, J. Phys. Chem. Ref. Data, V1, P279, DOI [10.1063/1.3253100, DOI 10.1063/1.3253100]
[10]  
Hu J., 2013, MAT RES SOC S P, V1456