A Hierarchical Approach for Active Mobile Robot Localization

被引:0
作者
Zhou, Hongjun [1 ]
Sakane, Shigeyuki [2 ]
机构
[1] Tokyo Metropolitan Ind Technol Res Inst, Informat Technol Grp, Kita Ku, Tokyo 115, Japan
[2] Chuo Univ, Fac Sience & Engn, Dept Ind & Syst Engn, Bunkyo Ku, Tokyo 112, Japan
来源
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL | 2009年 / 12卷 / 01期
关键词
Sensor planning; Localization; hierarchical approach; Particle filter; Bayesian Network; PERCEPTION; TRACKING;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes our hierarchical approach to solving sensor planning for the global localization of a mobile robot. Our system consists of two subsystems: a lower layer and a higher layer. The lower layer uses a particle filter to evaluate the posterior probability of the localization. When the particles converge into clusters, the higher layer starts particle clustering and sensor planning to generate the optimal sensing action sequence for the localization. The higher layer uses a Bayesian network for probabilistic inference. The sensor planning takes into account both localization belief and sensing cost. We conducted simulations and actual robot experiments to validate our proposed approach.
引用
收藏
页码:87 / 115
页数:29
相关论文
共 30 条
[1]  
[Anonymous], 1996, P IEEE RSJ INT C INT
[2]  
[Anonymous], ARTIFICIAL INTELLIGE
[3]  
[Anonymous], 1996, Robot_motion_planning
[4]  
[Anonymous], 1999, P IEEE INT C ROB AUT
[5]  
ASOH H, 1996, P INT C INT ROB SYST, P880
[6]   A DECISION-THEORETIC APPROACH TO PLANNING, PERCEPTION, AND CONTROL [J].
BASYE, K ;
DEAN, T ;
KIRMAN, J ;
LEJTER, M .
IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1992, 7 (04) :58-65
[7]   THE COMPUTATIONAL-COMPLEXITY OF PROBABILISTIC INFERENCE USING BAYESIAN BELIEF NETWORKS [J].
COOPER, GF .
ARTIFICIAL INTELLIGENCE, 1990, 42 (2-3) :393-405
[8]  
Dellaert F, 1999, ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, P1322, DOI 10.1109/ROBOT.1999.772544
[9]  
Doucet A., 2001, Sequential Monte Carlo methods in practice, V1
[10]  
Duda R. O., 2000, Pattern classification