Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data

被引:102
作者
Jia, Kun [1 ,2 ]
Liang, Shunlin [1 ,2 ,3 ]
Zhang, Ning [4 ]
Wei, Xiangqin [5 ]
Gu, Xingfa [5 ]
Zhao, Xiang [1 ,2 ]
Yao, Yunjun [1 ,2 ]
Xie, Xianhong [1 ,2 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
[3] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[4] Minist Housing & Urban Rural Dev Peoples Republ C, Ctr Remote Sensing Applicat, Beijing, Peoples R China
[5] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Land cover; Finer resolution; Temporal features; Classification; Landsat; 8; Fusion; MODIS SURFACE REFLECTANCE; SPATIAL-RESOLUTION; FUSION MODEL; CLIMATE; SENSORS; IMAGERY; CARBON; CHINA;
D O I
10.1016/j.isprsjprs.2014.04.004
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved. (C) 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 36 条
[11]   Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J].
Gong, Peng ;
Wang, Jie ;
Yu, Le ;
Zhao, Yongchao ;
Zhao, Yuanyuan ;
Liang, Lu ;
Niu, Zhenguo ;
Huang, Xiaomeng ;
Fu, Haohuan ;
Liu, Shuang ;
Li, Congcong ;
Li, Xueyan ;
Fu, Wei ;
Liu, Caixia ;
Xu, Yue ;
Wang, Xiaoyi ;
Cheng, Qu ;
Hu, Luanyun ;
Yao, Wenbo ;
Zhang, Han ;
Zhu, Peng ;
Zhao, Ziying ;
Zhang, Haiying ;
Zheng, Yaomin ;
Ji, Luyan ;
Zhang, Yawen ;
Chen, Han ;
Yan, An ;
Guo, Jianhong ;
Yu, Liang ;
Wang, Lei ;
Liu, Xiaojun ;
Shi, Tingting ;
Zhu, Menghua ;
Chen, Yanlei ;
Yang, Guangwen ;
Tang, Ping ;
Xu, Bing ;
Giri, Chandra ;
Clinton, Nicholas ;
Zhu, Zhiliang ;
Chen, Jin ;
Chen, Jun .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (07) :2607-2654
[12]   Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data [J].
Gu, Yingxin ;
Brown, Jesslyn F. ;
Miura, Tomoaki ;
van Leeuwen, Willem J. D. ;
Reed, Bradley C. .
REMOTE SENSING, 2010, 2 (02) :526-544
[13]   Global land cover classification at 1km spatial resolution using a classification tree approach [J].
Hansen, MC ;
Defries, RS ;
Townshend, JRG ;
Sohlberg, R .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) :1331-1364
[14]   Automatic land- cover update approach integrating iterative training sample selection and a Markov Random Field model [J].
Jia, Kun ;
Liang, Shunlin ;
Wei, Xiangqin ;
Zhang, Lei ;
Yao, Yunjun ;
Gao, Shuai .
REMOTE SENSING LETTERS, 2014, 5 (02) :148-156
[15]   Vegetation classification method with biochemical composition estimated from remote sensing data [J].
Jia, Kun ;
Wu, Bingfang ;
Tian, Yichen ;
Zeng, Yuan ;
Li, Qiangzi .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (24) :9307-9325
[16]   Crop classification using HJ satellite multispectral data in the North China Plain [J].
Jia, Kun ;
Wu, Bingfang ;
Li, Qiangzi .
JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
[17]   Exploiting synergies of global land cover products for carbon cycle modeling [J].
Jung, M ;
Henkel, K ;
Herold, M ;
Churkina, G .
REMOTE SENSING OF ENVIRONMENT, 2006, 101 (04) :534-553
[18]  
Liang S., 2008, Advances in land remote sensing: system, modeling, inversion and application
[19]   Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data [J].
Liu, JY ;
Zhuang, DF ;
Luo, D ;
Xiao, X .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (12) :2485-2500
[20]   Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data [J].
Loveland, TR ;
Reed, BC ;
Brown, JF ;
Ohlen, DO ;
Zhu, Z ;
Yang, L ;
Merchant, JW .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) :1303-1330