The absence of normalizable time-periodic solutions for the Dirac equation in the Kerr-Newman-dS black hole background

被引:13
作者
Belgiorno, Francesco [1 ]
Cacciatori, Sergio L. [2 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Univ Insubria, Dipartimento Matemat & Fis, I-22100 Como, Italy
关键词
NONEXISTENCE; PROPAGATOR; GEOMETRY; SYSTEMS;
D O I
10.1088/1751-8113/42/13/135207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Dirac equation on the background of a Kerr-Newman-de Sitter black hole. By performing variable separation, we show that no time-periodic and normalizable solution of the Dirac equation is allowed, which amounts to the absence of quantum bound states for the Dirac Hamiltonian. This conclusion holds true even for extremal black holes. With respect to previously considered cases, the novelty is represented by the presence, in addition to a black hole event horizon, of a cosmological (non-degenerate) event horizon, which is at the root of the possibility to draw a conclusion on the aforementioned topic in a straightforward way even in the extremal case.
引用
收藏
页数:15
相关论文
共 28 条
[1]  
Akhiezer N. I., 1981, THEORY LINEAR OPERAT, VII
[2]  
[Anonymous], 1973, BLACK HOLES
[3]   The Dirac propagator in the extreme Kerr metric [J].
Batic, D. ;
Schmid, H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) :13443-13451
[4]   The Dirac propagator in the Kerr-Newman metric [J].
Batic, Davide ;
Schmid, Harald .
PROGRESS OF THEORETICAL PHYSICS, 2006, 116 (03) :517-544
[5]  
BELGIORNO F, 2008, ARXIV08032496, P32005
[6]  
Birman M.S., 1987, Spectral theory of self-adjoint operators in Hilbert space
[7]  
BLANK J, 1994, AIP SERIES COMPUTATI
[8]  
Dafermos M, 2003, COMMUN MATH PHYS, V238, P411, DOI [10.1007/s00220-003-0870-0, 10.1007/S00220-003-0870-0]
[9]   The thermodynamics of a Kerr-Newman-de Sitter black hole [J].
Dehghani, MH ;
KhajehAzad, H .
CANADIAN JOURNAL OF PHYSICS, 2003, 81 (12) :1363-1375
[10]  
Eastham M.S.P., 1989, The asymptotic solution of linear differential systems, V4