Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission

被引:92
作者
Islam, Md. Saiful [1 ]
Sultana, Jakeya [1 ]
Rana, Sohel [2 ]
Islam, Mohammad Rakibul [1 ,3 ]
Faisal, Mohammad
Kaijage, Shubi F. [4 ]
Abbott, Derek [5 ]
机构
[1] Islam Univ Technol, Dept Elect & Elect Engn, Gazipur 1704, Bangladesh
[2] Rajshahi Univ Engn & Technol, Dept Elect & Elect Engn, Rajshahi 6204, Bangladesh
[3] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka 1000, Bangladesh
[4] Nelson Mandela African Inst Sci & Technol, Sch Computat & Commun Sci & Engn, Dept Commun Sci & Engn, Arusha 23311, Tanzania
[5] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
关键词
Optical fiber; Terahertz; Effective material loss; Dispersion; Photonic crystal fiber; POLYMER OPTICAL-FIBER; TIME-DOMAIN SPECTROSCOPY; PHOTONIC CRYSTAL FIBER; BROAD-BAND; GUIDES; RADIATION; DESIGN;
D O I
10.1016/j.yofte.2016.11.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a porous-core circular photonic crystal fiber (PC-CPCF) with ultra-low material loss for efficient terahertz wave transmission. The full vector finite element method with an ideally matched layer boundary condition is used to characterize the wave guiding properties of the proposed fiber. At an operating frequency of 1 THz, simulated results exhibit an extremely low effective material loss of 0.043 cm (1), higher core power fraction of 47% and ultra-flattened dispersion variation of 0.09 ps/THz/cm. The effects of important design properties such as single mode operation, confinement loss and effective area of the fiber are investigated in the terahertz regime. Moreover, the proposed fiber can be fabricated using the capillary stacking or sol-gel technique and be useful for long distance transmission of terahertz waves. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:6 / 11
页数:6
相关论文
共 44 条
[1]   Terahertz dielectric waveguides [J].
Atakaramians, Shaghik ;
Afshar, Shahraam V. ;
Monro, Tanya M. ;
Abbott, Derek .
ADVANCES IN OPTICS AND PHOTONICS, 2013, 5 (02) :169-215
[2]   Direct probing of evanescent field for characterization of porous terahertz fibers [J].
Atakaramians, Shaghik ;
Shahraam, Afshar, V ;
Nagel, Michael ;
Rasmussen, Henrik K. ;
Bang, Ole ;
Monro, Tanya M. ;
Abbott, Derek .
APPLIED PHYSICS LETTERS, 2011, 98 (12)
[3]   A porous terahertz fiber with randomly distributed air holes [J].
Bai, J. J. ;
Li, J. N. ;
Zhang, H. ;
Fang, H. ;
Chang, S. J. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 103 (02) :381-386
[4]   Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy [J].
Balakrishnan, Jegathisvaran ;
Fischer, Bernd M. ;
Abbott, Derek .
APPLIED OPTICS, 2009, 48 (12) :2262-2266
[5]   Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding [J].
Bao, Hualong ;
Nielsen, Kristian ;
Bang, Ole ;
Jepsen, Peter Uhd .
SCIENTIFIC REPORTS, 2015, 5
[6]   Design and optimization of mechanically down-doped terahertz fiber directional couplers [J].
Bao, Hualong ;
Nielsen, Kristian ;
Rasmussen, Henrik K. ;
Jepsen, Peter Uhd ;
Bang, Ole .
OPTICS EXPRESS, 2014, 22 (08) :9486-9497
[7]   Fabrication and characterization of porous-core honeycomb bandgap THz fibers [J].
Bao, Hualong ;
Nielsen, Kristian ;
Rasmussen, Henrik K. ;
Jepsen, Peter Uhd ;
Bang, Ole .
OPTICS EXPRESS, 2012, 20 (28) :29507-29517
[8]  
Bisen R.T., 2005, P OPT FIB COMM C ANA
[9]   Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation [J].
Bowden, Bradley ;
Harrington, James A. ;
Mitrofanov, Oleg .
OPTICS LETTERS, 2007, 32 (20) :2945-2947
[10]   Imaging with terahertz radiation [J].
Chan, Wai Lam ;
Deibel, Jason ;
Mittleman, Daniel M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) :1325-1379