In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process

被引:22
作者
Hu, Jian Zhi [1 ]
Zhao, Zhenchao [1 ]
Hu, Mary Y. [1 ]
Feng, Ju [1 ]
Deng, Xuchu [1 ]
Chen, Xilin [2 ]
Xu, Wu [2 ]
Liu, Jun [2 ]
Zhang, Ji-Guang [2 ]
机构
[1] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Fundamental & Comp Sci Directorate, Richland, WA 99354 USA
[2] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Energy & Environm Directorate, Richland, WA 99354 USA
关键词
Batteries; Cesium ion; Lithium; In situ; NMR; SCANNING-ELECTRON-MICROSCOPY; LIQUID ELECTROLYTES; NMR-SPECTROSCOPY; DENDRITE GROWTH; BATTERIES; CELLS; CHALLENGES; ALLOY;
D O I
10.1016/j.jpowsour.2015.10.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cesium ion (Cs+) has been reported to be an effective electrolyte additive to suppress Li dendrite growth which prevents the application of lithium (Li) metal as an anode for rechargeable Li batteries. In this work, we investigated the effect of Cs+ additive on Li depositions using quantitative in situ Li-7 and Cs-133 nuclear magnetic resonance (NMR) with planar symmetric Li cells. It's found that the addition of Cs+ can significantly enhance both the formation of well aligned Li nanorods and reversibility of the Li electrode. In situ Cs-133 NMR directly confirms that Cs+ migrates to Li electrode to form a positively charged electrostatic shield during the charging process. Much more electrochemical "active" Li was found in Li films deposited with Cs+ additive, while more electrochemical "dead" and thicker Li rods were identified in Li films deposited without Cs+. Combining the in situ and the previous ex-situ results, a Li deposition model has been proposed to explain these observations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 29 条
  • [1] Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries
    Abbrent, Sabina
    Greenbaum, Steve
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2013, 18 (03) : 228 - 244
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
  • [4] In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells
    Blanc, Frederic
    Leskes, Michal
    Grey, Clare P.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (09) : 1952 - 1963
  • [5] Dendritic growth mechanisms in lithium/polymer cells
    Brissot, C
    Rosso, M
    Chazalviel, JN
    Lascaud, S
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 925 - 929
  • [6] Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
  • [7] In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite: second cycle analysis
    Chevalier, Frederic
    Poli, Fabrizia
    Montigny, Benedicte
    Letellier, Michel
    [J]. CARBON, 2013, 61 : 140 - 153
  • [8] Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
    Ding, Fei
    Xu, Wu
    Chen, Xilin
    Zhang, Jian
    Shao, Yuyan
    Engelhard, Mark H.
    Zhang, Yaohui
    Blake, Thomas A.
    Graff, Gordon L.
    Liu, Xingjiang
    Zhang, Ji-Guang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (08) : 4043 - 4049
  • [9] Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
    Ding, Fei
    Xu, Wu
    Graff, Gordon L.
    Zhang, Jian
    Sushko, Maria L.
    Chen, Xilin
    Shao, Yuyan
    Engelhard, Mark H.
    Nie, Zimin
    Xiao, Jie
    Liu, Xingjiang
    Sushko, Peter V.
    Liu, Jun
    Zhang, Ji-Guang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) : 4450 - 4456
  • [10] Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes
    Ely, David R.
    Garcia, R. Edwin
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) : A662 - A668