Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach

被引:0
|
作者
Oany, Arafat Rahman [1 ]
Emran, Abdullah-Al [1 ,2 ]
Jyoti, Tahmina Pervin [3 ]
机构
[1] Mawlana Bhashani Sci & Technol Univ, Fac Life Sci, Dept Biotechnol & Genet Engn, Tangail 1902, Bangladesh
[2] Univ Queensland, Translat Res Inst, Brisbane, Qld, Australia
[3] Khulna Univ, Sch Life Sci, Biotechnol & Genet Engn Discipline, Khulna, Bangladesh
来源
关键词
vaccinomics; HLA; atypical pneumonia; allergenicity; docking; T-CELL EPITOPES; ANTIGENIC DETERMINANTS; COMPUTATIONAL ASSAY; RNA-POLYMERASE; TAP TRANSPORT; VIRUS; PREDICTION; ANTIBODY; RECEPTOR; BINDING;
D O I
10.2147/DDDT.567861
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Human coronavirus (HCoV), a member of Coronaviridae family, is the causative agent of upper respiratory tract infections and "atypical pneumonia". Despite severe epidemic outbreaks on several occasions and lack of antiviral drug, not much progress has been made with regard to an epitope-based vaccine designed for HCoV. In this study, a computational approach was adopted to identify a multiepitope vaccine candidate against this virus that could be suitable to trigger a significant immune response. Sequences of the spike proteins were collected from a protein database and analyzed with an in silico tool, to identify the most immunogenic protein. Both T cell immunity and B cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence from 88-94 amino acids and the sequence KSSTGFVYF were found as the most potential B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further tested for binding against the HLA molecules, using in silico docking techniques, to verify the binding cleft epitope interaction. The allergenicity of the epitopes was also evaluated. This computational study of design of an epitope-based peptide vaccine against HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive grounds, albeit the preliminary results thereof require validation by in vitro and in vivo experiments.
引用
收藏
页码:1139 / 1149
页数:11
相关论文
共 50 条
  • [1] In Silico Epitope-Based Peptide Vaccine Design Against Influenza B Virus: An Immunoinformatics Approach
    Wu, Hao
    Zhao, Chenyan
    Cheng, Ziqi
    Huang, Weijin
    Yu, Yongxin
    PROCESSES, 2025, 13 (03)
  • [2] An in silico epitope-based peptide vaccine design against the 2019-nCoV
    Durojaye, Olanrewaju Ayodeji
    Mushiana, Talifhani
    Cosmas, Samuel
    Ibiang, Glory Omini
    Ibiang, Mercy Omini
    EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS, 2020, 21 (01)
  • [3] In-silico design of an epitope-based vaccine against Human Norovirus
    Gomez Santiago, F.
    Carreno, L. R.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 101 : 468 - 468
  • [4] An in silico epitope-based peptide vaccine design against the 2019-nCoV
    Olanrewaju Ayodeji Durojaye
    Talifhani Mushiana
    Samuel Cosmas
    Glory Omini Ibiang
    Mercy Omini Ibiang
    Egyptian Journal of Medical Human Genetics, 21
  • [5] Design of an epitope-based peptide vaccine against Cryptococcus neoformans
    Omer, Ibtihal
    Khalil, Isra
    Abdalmumin, Ahmed
    Molefe, Philisiwe Fortunate
    Sabeel, Solima
    Farh, Islam Zainalabdin Abdalgadir
    Mohamed, Hanaa Abdalla
    Elsharif, Hajr Abdallha
    Mohamed, ALazza Abdalla Hassan
    Awad-Elkareem, Mawadda Abd-Elraheem
    Salih, Mohamed
    FEBS OPEN BIO, 2024, 14 (09): : 1471 - 1489
  • [6] In silico analysis of epitope-based CadF vaccine design against Campylobacterjejuni
    Moballegh Naseri, Mona
    Shams, Saeed
    Moballegh Naseri, Mohammad
    Bakhshi, Bita
    BMC RESEARCH NOTES, 2020, 13 (01)
  • [7] In silico analysis of epitope-based CadF vaccine design against Campylobacterjejuni
    Mona Moballegh Naseri
    Saeed Shams
    Mohammad Moballegh Naseri
    Bita Bakhshi
    BMC Research Notes, 13
  • [8] From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein
    Alam, Aftab
    Ali, Shahnawaz
    Ahamad, Shahzaib
    Malik, Md. Zubbair
    Ishrat, Romana
    IMMUNOLOGY, 2016, 149 (04) : 386 - 399
  • [9] In silico design of an epitope-based vaccine ensemble for fasliolopsiasis
    Konhar, Ruchishree
    Das, Kanhu Charan
    Nongrum, Aiboklang
    Samal, Rohan Raj
    Sarangi, Shailesh Kumar
    Biswal, Devendra Kumar
    FRONTIERS IN GENETICS, 2025, 15
  • [10] In-silico design of a multivalent epitope-based vaccine against Candida auris
    Akhtar, Nahid
    Joshi, Amit
    Kaushik, Vikas
    Kumar, Manish
    Amin-ul Mannan, M.
    MICROBIAL PATHOGENESIS, 2021, 155