Estimating the Relative Contribution of Environmental and Genetic Risk Factors to Different Aging Traits by Combining Correlated Variables into Weighted Risk Scores

被引:3
作者
Wigmann, Claudia [1 ]
Huls, Anke [2 ,3 ]
Krutmann, Jean [1 ,4 ]
Schikowski, Tamara [1 ]
机构
[1] IUF Leibniz Res Inst Environm Med, D-40225 Dusseldorf, Germany
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA
[3] Emory Univ, Rollins Sch Publ Hlth, Gangarosa Dept Environm Hlth, Atlanta, GA 30322 USA
[4] Human Phenome Inst, Shanghai 200433, Peoples R China
关键词
aging; environmental exposure; exposome; relative contribution; relative importance; risk score; GENOME-WIDE ASSOCIATION; USE REGRESSION-MODELS; AIR-POLLUTION; LUNG-FUNCTION; EXPOSURE; ESCAPE; REGULARIZATION; CHALLENGE; SELECTION; VARIANTS;
D O I
10.3390/ijerph192416746
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Genetic and exposomal factors contribute to the development of human aging. For example, genetic polymorphisms and exposure to environmental factors (air pollution, tobacco smoke, etc.) influence lung and skin aging traits. For prevention purposes it is highly desirable to know the extent to which each category of the exposome and genetic factors contribute to their development. Estimating such extents, however, is methodologically challenging, mainly because the predictors are often highly correlated. Tackling this challenge, this article proposes to use weighted risk scores to assess combined effects of categories of such predictors, and a measure of relative importance to quantify their relative contribution. The risk score weights are determined via regularized regression and the relative contributions are estimated by the proportion of explained variance in linear regression. This approach is applied to data from a cohort of elderly Caucasian women investigated in 2007-2010 by estimating the relative contribution of genetic and exposomal factors to skin and lung aging. Overall, the models explain 17% (95% CI: [9%, 28%]) of the outcome's variance for skin aging and 23% ([11%, 34%]) for lung function parameters. For both aging traits, genetic factors make up the largest contribution. The proposed approach enables us to quantify and rank contributions of categories of exposomal and genetic factors to human aging traits and facilitates risk assessment related to common human diseases in general. Obtained rankings can aid political decision making, for example, by prioritizing protective measures such as limit values for certain exposures.
引用
收藏
页数:13
相关论文
共 47 条
  • [1] Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis
    Adam, Martin
    Schikowski, Tamara
    Elie Carsin, Anne
    Cai, Yutong
    Jacquemin, Benedicte
    Sanchez, Margaux
    Vierkoetter, Andrea
    Marcon, Alessandro
    Keidel, Dirk
    Sugiri, Dorothee
    Al Kanani, Zaina
    Nadif, Rachel
    Siroux, Valerie
    Hardy, Rebecca
    Kuh, Diana
    Rochat, Thierry
    Bridevaux, Pierre-Olivier
    Eeftens, Marloes
    Tsai, Ming-Yi
    Villani, Simona
    Phuleria, Harish Chandra
    Birk, Matthias
    Cyrys, Josef
    Cirach, Marta
    de Nazelle, Audrey
    Nieuwenhuijsen, Mark J.
    Forsberg, Beril
    de Hoogh, Kees
    Declerq, Christophe
    Bono, Roberto
    Piccioni, Pavilio
    Quass, Ulrich
    Heinrich, Joachim
    Jarvis, Deborah
    Pin, Isabelle
    Beelen, Rob
    Hoek, Gerard
    Brunekreef, Bert
    Schindler, Christian
    Sunyer, Jordi
    Kraemer, Ursula
    Kauffmann, Francine
    Hansell, Anna L.
    Kuenzli, Nino
    Probst-Hensch, Nicole
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2015, 45 (01) : 38 - 50
  • [2] [Anonymous], 2004, HLTH CONS SMOK REP S
  • [3] Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project
    Beelen, Rob
    Hoek, Gerard
    Vienneau, Danielle
    Eeftens, Marloes
    Dimakopoulou, Konstantina
    Pedeli, Xanthi
    Tsai, Ming-Yi
    Kunzli, Nino
    Schikowski, Tamara
    Marcon, Alessandro
    Eriksen, Kirsten T.
    Raaschou-Nielsen, Ole
    Stephanou, Euripides
    Patelarou, Evridiki
    Lanki, Timo
    Yli-Tuomi, Tarja
    Declercq, Christophe
    Falq, Gregoire
    Stempfelet, Morgane
    Birk, Matthias
    Cyrys, Josef
    von Klot, Stephanie
    Nador, Gizella
    Varro, Mihaly Janos
    Dedele, Audrius
    Grazuleviciene, Regina
    Moelter, Anna
    Lindley, Sarah
    Madsen, Christian
    Cesaroni, Giulia
    Ranzi, Andrea
    Badaloni, Chiara
    Hoffmann, Barbara
    Nonnemacher, Michael
    Kraemer, Ursula
    Kuhlbusch, Thomas
    Cirach, Marta
    de Nazelle, Audrey
    Nieuwenhuijsen, Mark
    Bellander, Tom
    Korek, Michal
    Olsson, David
    Stromgren, Magnus
    Dons, Evi
    Jerrett, Michael
    Fischer, Paul
    Wang, Meng
    Brunekreef, Bert
    de Hoogh, Kees
    [J]. ATMOSPHERIC ENVIRONMENT, 2013, 72 : 10 - 23
  • [4] Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures
    Bobb, Jennifer F.
    Valeri, Linda
    Claus Henn, Birgit
    Christiani, David C.
    Wright, Robert O.
    Mazumdar, Maitreyi
    Godleski, John J.
    Coull, Brent A.
    [J]. BIOSTATISTICS, 2015, 16 (03) : 493 - 508
  • [5] Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting
    Carrico, Caroline
    Gennings, Chris
    Wheeler, David C.
    Factor-Litvak, Pam
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (01) : 100 - 120
  • [6] Next-generation genotype imputation service and methods
    Das, Sayantan
    Forer, Lukas
    Schoenherr, Sebastian
    Sidore, Carlo
    Locke, Adam E.
    Kwong, Alan
    Vrieze, Scott I.
    Chew, Emily Y.
    Levy, Shawn
    McGue, Matt
    Schlessinger, David
    Stambolian, Dwight
    Loh, Po-Ru
    Iacono, William G.
    Swaroop, Anand
    Scott, Laura J.
    Cucca, Francesco
    Kronenberg, Florian
    Boehnke, Michael
    Abecasis, Goncalo R.
    Fuchsberger, Christian
    [J]. NATURE GENETICS, 2016, 48 (10) : 1284 - 1287
  • [7] Power and Predictive Accuracy of Polygenic Risk Scores
    Dudbridge, Frank
    [J]. PLOS GENETICS, 2013, 9 (03):
  • [8] Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project
    Eeftens, Marloes
    Beelen, Rob
    de Hoogh, Kees
    Bellander, Tom
    Cesaroni, Giulia
    Cirach, Marta
    Declercq, Christophe
    Dedele, Audrius
    Dons, Evi
    de Nazelle, Audrey
    Dimakopoulou, Konstantina
    Eriksen, Kirsten
    Falq, Gregoire
    Fischer, Paul
    Galassi, Claudia
    Grazuleviciene, Regina
    Heinrich, Joachim
    Hoffmann, Barbara
    Jerrett, Michael
    Keidel, Dirk
    Korek, Michal
    Lanki, Timo
    Lindley, Sarah
    Madsen, Christian
    Moelter, Anna
    Nador, Gizella
    Nieuwenhuijsen, Mark
    Nonnemacher, Michael
    Pedeli, Xanthi
    Raaschou-Nielsen, Ole
    Patelarou, Evridiki
    Quass, Ulrich
    Ranzi, Andrea
    Schindler, Christian
    Stempfelet, Morgane
    Stephanou, Euripides
    Sugiri, Dorothea
    Tsai, Ming-Yi
    Yli-Tuomi, Tarja
    Varro, Mihaly J.
    Vienneau, Danielle
    von Klot, Stephanie
    Wolf, Kathrin
    Brunekreef, Bert
    Hoek, Gerard
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) : 11195 - 11205
  • [9] Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations
    Endo, Chihiro
    Johnson, Todd A.
    Morino, Ryoko
    Nakazono, Kazuyuki
    Kamitsuji, Shigeo
    Akita, Masanori
    Kawajiri, Maiko
    Yamasaki, Tatsuya
    Kami, Azusa
    Hoshi, Yuria
    Tada, Asami
    Ishikawa, Kenichi
    Hine, Maaya
    Kobayashi, Miki
    Kurume, Nami
    Tsunemi, Yuichiro
    Kamatani, Naoyuki
    Kawashima, Makoto
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] Forgetta Vincenzo, 2020, PLoS Med, V17, pe1003152, DOI 10.1371/journal.pmed.1003152