Newton-like minimum entropy equalization algorithm for APSK systems

被引:6
作者
Ali, Anum [1 ]
Abrar, Shafayat [2 ]
Zerguine, Azzedine [1 ]
Nandi, Asoke K. [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dhahran 31261, Saudi Arabia
[2] COMSATS Inst Informat Technol, Islamabad, Pakistan
[3] Brunel Univ, Uxbridge UB8 3PH, Middx, England
关键词
Constant modulus algorithm; Blind equalizer; Recursive least squares algorithm; Newton's method; Tracking performance; Amplitude phase shift keying; TURBO-CODED APSK; PERFORMANCE ANALYSIS; BLIND; DECONVOLUTION; TRACKING; OFDM;
D O I
10.1016/j.sigpro.2014.02.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we design and analyze a Newton-like blind equalization algorithm for the APSK system. Specifically, we exploit the principle of minimum entropy deconvolution and derive a blind equalization cost function for APSK signals and optimize it using Newton's method. We study and evaluate the steady-state excess mean square error performance of the proposed algorithm using the concept of energy conservation. Numerical results depict a significant performance enhancement for the proposed scheme over well established blind equalization algorithms. Further, the analytical excess mean square error of the proposed algorithm is verified with computer simulations and is found to be in good conformation. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 47 条
[1]  
Abrar S., 2004, IEEE SCONEST, P41
[2]  
Abrar S., 2012, DIGITAL COMMUNICATIO, P93
[3]   Tracking Performance of Two Constant Modulus Equalizers [J].
Abrar, Shafayat ;
Ali, Anum ;
Zerguine, Azzedine ;
Nandi, Asoke K. .
IEEE COMMUNICATIONS LETTERS, 2013, 17 (05) :830-833
[4]   Adaptive Minimum Entropy Equalization Algorithm [J].
Abrar, Shafayat ;
Nandi, Asoke K. .
IEEE COMMUNICATIONS LETTERS, 2010, 14 (10) :966-968
[5]  
[Anonymous], 1994, Blind Deconvolution
[6]   ROBUST IDENTIFICATION OF A NON-MINIMUM PHASE SYSTEM - BLIND ADJUSTMENT OF A LINEAR EQUALIZER IN DATA COMMUNICATIONS [J].
BENVENISTE, A ;
GOURSAT, M ;
RUGET, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (03) :385-399
[7]  
Cavalcanti F. R. P., 1999, 1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304), P94, DOI 10.1109/SPAWC.1999.783027
[8]   Recursive least squares constant modulus algorithm for blind adaptive array [J].
Chen, YX ;
Le-Ngoc, T ;
Champagne, B ;
Xu, CJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (05) :1452-1456
[9]   Turbo-coded APSK modulations design for satellite broadband communications [J].
De Gaudenzi, Riccardo ;
Fabregas, Albert Guillen i ;
Martinez, Alfanso .
INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2006, 24 (04) :261-281
[10]  
de Sa J. P. M., 2013, Minimum error entropy classification