Quantum-enhanced interferometry with large heralded photon-number states

被引:40
|
作者
Thekkadath, G. S. [1 ]
Mycroft, M. E. [2 ]
Bell, B. A. [1 ]
Wade, C. G. [1 ]
Eckstein, A. [1 ]
Phillips, D. S. [1 ]
Patel, R. B. [1 ]
Buraczewski, A. [2 ]
Lita, A. E. [3 ]
Gerrits, T. [3 ,4 ]
Nam, S. W. [3 ]
Stobinska, M. [2 ]
Lvovsky, A. I. [1 ]
Walmsley, I. A. [1 ,5 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Univ Warsaw, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[3] NIST, 325 Broadway, Boulder, CO 80305 USA
[4] NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA
[5] Imperial Coll London, Dept Phys, Prince Consort Rd, London SW7 2AZ, England
基金
加拿大自然科学与工程研究理事会;
关键词
PHASE; LIMIT; NOISE;
D O I
10.1038/s41534-020-00320-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a N enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to N = 8 (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way toward quantum-enhanced interferometry using large entangled photonic states.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Photon-number distribution of squeezed states: A graphical treatment
    Mandal, S
    PHYSICAL REVIEW A, 1998, 58 (01): : 752 - 754
  • [42] Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states
    Dotsenko, I.
    Mirrahimi, M.
    Brune, M.
    Haroche, S.
    Raimond, J. -M.
    Rouchon, P.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [43] Quantum-Enhanced Magnetometry at Optimal Number Density
    Troullinou, Charikleia
    Lucivero, Vito Giovanni
    Mitchell, Morgan W.
    PHYSICAL REVIEW LETTERS, 2023, 131 (13)
  • [44] Quantum random number generator using photon-number path entanglement
    Kwon, Osung
    Cho, Young-Wook
    Kim, Yoon-Ho
    APPLIED OPTICS, 2009, 48 (09) : 1774 - 1778
  • [45] Quantum random number generator using photon-number path entanglement
    Kwon, Osung
    Cho, Young-Wook
    Kim, Yoon-Ho
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING VIII, 2010, 7815
  • [46] Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states
    Allevi, Alessia
    Olivares, Stefano
    Bondani, Maria
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [47] Truncated Nonlinear Interferometry for Quantum-Enhanced Atomic Force Microscopy
    Pooser, R. C.
    Savino, N.
    Batson, E.
    Beckey, J. L.
    Garcia, J.
    Lawrie, B. J.
    PHYSICAL REVIEW LETTERS, 2020, 124 (23)
  • [48] Phase-noise protection in quantum-enhanced differential interferometry
    Landini, M.
    Fattori, M.
    Pezze, L.
    Smerzi, A.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [49] Quantification of Quantum Correlations in Two-Beam Gaussian States Using Photon-Number Measurements
    Barasinski, Artur
    Perina Jr, Jan
    Cernoch, Antonin
    PHYSICAL REVIEW LETTERS, 2023, 130 (04)
  • [50] Multiphoton Effects Enhanced due to Ultrafast Photon-Number Fluctuations
    Spasibko, Kirill Yu.
    Kopylov, Denis A.
    Krutyanskiy, Victor L.
    Murzina, Tatiana V.
    Leuchs, Gerd
    Chekhova, Maria V.
    PHYSICAL REVIEW LETTERS, 2017, 119 (22)