Quantum-enhanced interferometry with large heralded photon-number states

被引:40
|
作者
Thekkadath, G. S. [1 ]
Mycroft, M. E. [2 ]
Bell, B. A. [1 ]
Wade, C. G. [1 ]
Eckstein, A. [1 ]
Phillips, D. S. [1 ]
Patel, R. B. [1 ]
Buraczewski, A. [2 ]
Lita, A. E. [3 ]
Gerrits, T. [3 ,4 ]
Nam, S. W. [3 ]
Stobinska, M. [2 ]
Lvovsky, A. I. [1 ]
Walmsley, I. A. [1 ,5 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Univ Warsaw, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[3] NIST, 325 Broadway, Boulder, CO 80305 USA
[4] NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA
[5] Imperial Coll London, Dept Phys, Prince Consort Rd, London SW7 2AZ, England
基金
加拿大自然科学与工程研究理事会;
关键词
PHASE; LIMIT; NOISE;
D O I
10.1038/s41534-020-00320-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a N enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to N = 8 (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way toward quantum-enhanced interferometry using large entangled photonic states.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Mode engineering for realistic quantum-enhanced interferometry
    Michał Jachura
    Radosław Chrapkiewicz
    Rafał Demkowicz-Dobrzański
    Wojciech Wasilewski
    Konrad Banaszek
    Nature Communications, 7
  • [22] Quantum-enhanced interferometry with weak thermal light
    Rafsanjani, Seyed Mohammad Hashemi
    Mirhosseini, Mohammad
    Magana-Loaiza, Omar S.
    Gard, Bryan T.
    Birrittella, Richard
    Koltenbah, B. E.
    Parazzoli, C. G.
    Capron, Barbara A.
    Gerry, Christopher C.
    Dowling, Jonathan P.
    Boyd, Robert W.
    OPTICA, 2017, 4 (04): : 487 - 491
  • [23] Quantum-enhanced interferometry with asymmetric beam splitters
    Wei Zhong
    Fan Wang
    Lan Zhou
    Peng Xu
    YuBo Sheng
    ScienceChina(Physics,Mechanics&Astronomy), 2020, (06) : 26 - 36
  • [24] Quantum-enhanced interferometry with asymmetric beam splitters
    Wei Zhong
    Fan Wang
    Lan Zhou
    Peng Xu
    YuBo Sheng
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [25] Optimal conventional measurements for quantum-enhanced interferometry
    Zhong, Wei
    Huang, Yixiao
    Wang, Xiaoguang
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [26] Photon-number squeezing in circuit quantum electrodynamics
    Marthaler, M.
    Schoen, Gerd
    Shnirman, Alexander
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [27] Generation of quantum light in a photon-number superposition
    Loredo, J. C.
    Anton, C.
    Reznychenko, B.
    Hilaire, P.
    Harouri, A.
    Millet, C.
    Ollivier, H.
    Somaschi, N.
    de Santis, L.
    Lemaitre, A.
    Sagnes, I.
    Lanco, L.
    Auffeves, A.
    Krebs, O.
    Senellart, P.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [28] Photon-number moments and cumulants of Gaussian states
    Cardin, Yanic
    Quesada, Nicolas
    QUANTUM, 2024, 8
  • [29] Revealing of photon-number splitting attack on quantum key distribution system by photon-number resolving devices
    Gaidash, A. A.
    Egorov, V. I.
    Gleim, A. V.
    INTERNATIONAL CONFERENCE OF YOUNG SCIENTISTS AND SPECIALISTS OPTICS-2015, 2016, 735
  • [30] Photon-number moments and cumulants of Gaussian states
    Cardin, Yanic
    Quesada, Nicolás
    arXiv, 2022,