Compact spaces, elementary submodels, and the countable chain condition, II

被引:2
作者
Tall, Franklin D. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
compact; countable chain condition; elementary submodel;
D O I
10.1016/j.topol.2005.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a space (X, T) in an elementary submodel of H(theta), define X-M to be X boolean AND M with the topology generated by {U boolean AND M: U is an element of T boolean AND M). It is established that if X-M is compact and satisfies the countable chain condition, while X is not scattered and has cardinality less than the first inaccessible cardinal, then X = X-M. If the character of X-M is a member of M, then "inaccessible" may be replaced by "1-extendible". (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2703 / 2708
页数:6
相关论文
共 12 条
[1]  
[Anonymous], DISCOVERING MODERN S
[2]  
[Anonymous], TOPOL P
[3]  
[Anonymous], 1984, HDB SET THEORETIC TO, DOI DOI 10.1016/B978-0-444-86580-9.50004-5
[4]  
JUHASZ I, 1980, MATH CTR TRACTS MATH
[5]   The topology of elementary submodels [J].
Junqueira, LR ;
Tall, FD .
TOPOLOGY AND ITS APPLICATIONS, 1998, 82 (1-3) :239-266
[6]   More reflections on compactness [J].
Junqueira, LR ;
Tall, FD .
FUNDAMENTA MATHEMATICAE, 2003, 176 (02) :127-141
[7]  
JUNQUEIRA LR, IN PRESS ANN PURE AP
[8]  
KANAMORI A, 1984, HIGHER INFINITE LARG
[9]   Compact spaces, compact cardinals, and elementary submodels [J].
Kunen, K .
TOPOLOGY AND ITS APPLICATIONS, 2003, 130 (02) :99-109
[10]  
Tall FD, 2000, FUND MATH, V163, P1