Exploration of TiO2 nanoparticle mediated microdynamic therapy on cancer treatment

被引:56
作者
Chu, Xiao [1 ]
Mao, Liang [2 ,3 ]
Johnson, Omar [4 ]
Li, Kang [5 ]
Phan, Jonathan [4 ]
Yin, Qingshui [5 ]
Li, Lihua [5 ]
Zhang, Junying [2 ,3 ]
Chen, Wei [4 ]
Zhang, Yu [1 ]
机构
[1] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Orthoped, Guangzhou, Guangdong, Peoples R China
[2] Beihang Univ, Minist Educ, Key Lab Micronano Measurement Manipulat & Phys, Beijing, Peoples R China
[3] Beihang Univ, Dept Phys, Beijing, Peoples R China
[4] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
[5] Gen Hosp Guangzhou Mil Command PLA, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Reactive oxygen species; TiO2; nanoparticles; Osteosarcoma; Microdynamic therapy; PHOTODYNAMIC THERAPY; TITANIUM-DIOXIDE; OXYGEN; WATER; ABLATION; MECHANISM; CELLS; ROS;
D O I
10.1016/j.nano.2019.02.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Radical therapy takes advantage of the reactive oxygen species produced in greater quantities within tumor cells than in normal cells. Here, for the first time, we explore a TiO2 nanoparticle mediated microwave induced radical therapy (tenned as Microdynamic Therapy) as a new cancer treatment method. The experiments in vitro and in vivo demonstrate that colloidal TiO2 nanoparticles could significantly suppress the growth of osteosarcomas, even under low power (5 W) microwave (MW) irradiation for 5 min. The high photocatalytic activity of TiO2 nanoparticles efficiently utilizes the microwave-induced plasmonic effect for the formation of reactive oxygen species (ROS). Furthermore, TiO2 nanoparticles exhibit a higher cytotoxicity on cancer cells (osteosarcorna UMR-106 cells) than on normal cells (mouse fibroblast L929 cells). The effectiveness of TiO2 nanoparticles for microwave induced radical therapy demonstrates that this is a new landmark approach to treating cancers. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:272 / 281
页数:10
相关论文
共 45 条
[1]   Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues [J].
Bancirova, Martina .
LUMINESCENCE, 2011, 26 (06) :685-688
[2]   Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells [J].
Blake, DM ;
Maness, PC ;
Huang, Z ;
Wolfrum, EJ ;
Huang, J ;
Jacoby, WA .
SEPARATION AND PURIFICATION METHODS, 1999, 28 (01) :1-50
[3]   Microwave tissue ablation: Biophysics, technology, and applications [J].
Brace C.L. .
Critical Reviews in Biomedical Engineering, 2010, 38 (01) :65-78
[4]  
Carrafiello Gianpaolo, 2008, Int J Surg, V6 Suppl 1, pS65, DOI 10.1016/j.ijsu.2008.12.028
[5]   H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells [J].
Chen, Huachao ;
Tian, Jiangwei ;
He, Weijiang ;
Guo, Zijian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) :1539-1547
[6]   Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment [J].
Chen, W ;
Zhang, J .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (04) :1159-1166
[7]   Exploration of Graphitic-C3N4 Quantum Dots for Microwave-Induced Photodynamic Therapy [J].
Chu, Xiao ;
Li, Kang ;
Guo, Hongyu ;
Zheng, Huibin ;
Shuda, Suzanne ;
Wang, Xiaolan ;
Zhang, Junying ;
Chen, Wei ;
Zhang, Yu .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (08) :1836-1844
[8]   Microwave ablation of malignant extremity bone tumors [J].
Fan, Qing-Yu ;
Zhou, Yong ;
Zhang, Minghua ;
Ma, Baoan ;
Yang, Tongtao ;
Long, Hua ;
Yu, Zhe ;
Li, Zhao .
SPRINGERPLUS, 2016, 5
[9]   Reactive oxygen species: A breath of life or death? [J].
Fruehauf, John P. ;
Meyskens, Frank L., Jr. .
CLINICAL CANCER RESEARCH, 2007, 13 (03) :789-794
[10]   Immunogenic cell death in cancer and infectious disease [J].
Galluzzi, Lorenzo ;
Buque, Aitziber ;
Kepp, Oliver ;
Zitvogel, Laurence ;
Kroemer, Guido .
NATURE REVIEWS IMMUNOLOGY, 2017, 17 (02) :97-111