Numerical Solution of Variable-Order Time Fractional Weakly Singular Partial Integro-Differential Equations with Error Estimation

被引:15
作者
Dehestani, Haniye [1 ]
Ordokhani, Yadollah [1 ]
Razzaghi, Mohsen [2 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Math, Tehran, Iran
[2] Mississippi State Univ, Dept Math & Stat, Starkville, MS 39762 USA
关键词
variable-order fractional partial integro-differential equations; weakly singular kernel; Legendre-Laguerre functions; pseudo-operational matrix; CONVERGENCE; DYNAMICS; VAN;
D O I
10.3846/mma.2020.11692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply Legendre-Laguerre functions (LLFs) and collocation method to obtain the approximate solution of variable-order time-fractional partial integro-differential equations (VO-TF-PIDEs) with the weakly singular kernel. For this purpose, we derive the pseudo-operational matrices with the use of the transformation matrix. The collocation method and pseudo-operational matrices transfer the problem to a system of algebraic equations. Also, the error analysis of the proposed method is given. We consider several examples to illustrate the proposed method is accurate.
引用
收藏
页码:680 / 701
页数:22
相关论文
共 37 条
[11]   Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation [J].
Diaz, G. ;
Coimbra, C. F. M. .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :145-157
[12]   SPLINE COLLOCATION METHODS FOR A CLASS OF HYPERBOLIC PARTIAL INTEGRODIFFERENTIAL EQUATIONS [J].
FAIRWEATHER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :444-460
[13]  
Hormander Lars, 1990, The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, V2nd, DOI [10.1007/978-3-642-61497-2, DOI 10.1007/978-3-642-61497-2]
[14]   Control of damping oscillations by fractional differential operator with time-dependent order [J].
Ingman, D ;
Suzdalnitsky, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) :5585-5595
[15]   A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model [J].
Jiang, Wei ;
Liu, Na .
APPLIED NUMERICAL MATHEMATICS, 2017, 119 :18-32
[16]   Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation [J].
Lin, R. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 212 (02) :435-445
[17]  
Linz P., 1985, Analytical and numerical methods for Volterra equations, DOI 10.1137/1.9781611970852
[18]   Time discretization via Laplace transformation of an integro-differential equation of parabolic type [J].
McLean, W ;
Sloan, IH ;
Thomée, V .
NUMERISCHE MATHEMATIK, 2006, 102 (03) :497-522
[19]   An integro quadratic spline approach for a class of variable-order fractional initial value problems [J].
Moghaddam, B. P. ;
Machado, J. A. T. ;
Behforooz, H. .
CHAOS SOLITONS & FRACTALS, 2017, 102 :354-360
[20]   A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations [J].
Moghaddam, B. P. ;
Machado, J. A. T. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1262-1269