A note on cyclic codes over GR(p2,m) of length pk

被引:12
作者
Sobhani, R. [1 ]
Esmaeili, M. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Cyclic codes; Galois rings; EVEN LENGTH; Z(4);
D O I
10.1016/j.ffa.2009.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear cyclic codes of length p(k) over the Galois ring GR(p(2),m), that is ideals of the ring GR(p(2),m)vertical bar u vertical bar/(u(pk) - 1), are studied. The form of the dual codes is analyzed and self-dual codes are identified. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:387 / 391
页数:5
相关论文
共 6 条
[1]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[2]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[3]  
Dougherty ST, 2006, DESIGN CODE CRYPTOGR, V39, P127, DOI 10.1007/s10623-005-2773-x
[4]   On modular cyclic codes [J].
Dougherty, Steven T. ;
Park, Young Ho .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :31-57
[5]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[6]   Cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :834-846