Impact of Carrier Concentration and Carrier Lifetime on MgZnO/CdSeTe/CdTe Solar Cells

被引:49
作者
Pandey, Ramesh [1 ]
Shimpi, Tushar [2 ]
Munshi, Amit [2 ]
Sites, James R. [1 ]
机构
[1] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2020年 / 10卷 / 06期
关键词
Doping; II-VI semiconductor materials; Cadmium compounds; Photovoltaic cells; Charge carrier lifetime; Charge carrier density; Semiconductor process modeling; Carrier concentration; CdSeTe; CdTe; interface recombination; MgZnO (MZO); PASSIVATION;
D O I
10.1109/JPHOTOV.2020.3017741
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance impact of multiple parameters related to the use of MgZnO (MZO) as the emitter for bilayer CdSeTe/CdTe solar cells has been investigated in detail through numerical simulations. Such a comprehensive study is particularly important, because while cell fabrication using MZO has been highly successful in some cases, it has been less so in others, and it has not been clear which combinations of parameter values are most effective. The parameters considered here include the recombination velocity at the emitter/absorber interface, bulk recombination lifetime, and the carrier concentrations of the emitter and absorber. The ranges chosen for the simulation parameters are those most likely to be found experimentally. The primary finding is that independent of the interfacial recombination velocity and bulk recombination lifetime, the MZO carrier density should be > 10(17) cm(-3) and in any case greater than that of the absorber to reduce interface recombination. At the same time, a shallowdopant the order of 50 meV or less should reduce Shockley-Read-Hall recombination in the bulk and enable VOC > 1 V.
引用
收藏
页码:1918 / 1925
页数:8
相关论文
共 32 条
[1]   Interface Engineering for 25% CdTe Solar Cells [J].
Ablekim, Tursun ;
Colegrove, Eric ;
Metzger, Wyatt K. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (10) :5135-5139
[2]   Self-compensation in arsenic doping of CdTe [J].
Ablekim, Tursun ;
Swain, Santosh K. ;
Yin, Wan-Jian ;
Zaunbrecher, Katherine ;
Burst, James ;
Barnes, Teresa M. ;
Kuciauskas, Darius ;
Wei, Su-Huai ;
Lynn, Kelvin G. .
SCIENTIFIC REPORTS, 2017, 7
[3]   Influence of CdTe Deposition Temperature and Window Thickness on CdTe Grain Size and Lifetime After CdCl2 Recrystallization [J].
Amarasinghe, Mahisha ;
Colegrove, Eric ;
Moutinho, Helio ;
Albin, David ;
Duenow, Joel ;
Johnston, Steve ;
Kephart, Jason ;
Sampath, Walajabad ;
Al-Jassim, Mowafak ;
Sivananthan, Siva ;
Metzger, Wyatt K. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (02) :600-603
[4]   Deep-level impurities in CdTe/CdS thin-film solar cells [J].
Balcioglu, A ;
Ahrenkiel, RK ;
Hasoon, F .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (12) :7175-7178
[5]  
Burgelman M., 2000, MODELLING POLYCRYSTA, DOI [10.1016/S0040-6090(99), DOI 10.1016/S0040-6090(99)]
[6]   CdTe solar cells with open-circuit voltage breaking the 1V barrier [J].
Burst, J. M. ;
Duenow, J. N. ;
Albin, D. S. ;
Colegrove, E. ;
Reese, M. O. ;
Aguiar, J. A. ;
Jiang, C. -S. ;
Patel, M. K. ;
Al-Jassim, M. M. ;
Kuciauskas, D. ;
Swain, S. ;
Ablekim, T. ;
Lynn, K. G. ;
Metzger, W. K. .
NATURE ENERGY, 2016, 1
[7]   Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe [J].
Burst, James M. ;
Farrell, Stuart B. ;
Albin, David S. ;
Colegrove, Eric ;
Reese, Matthew O. ;
Duenow, Joel N. ;
Kuciauskas, Darius ;
Metzger, Wyatt K. .
APL MATERIALS, 2016, 4 (11)
[8]   Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe [J].
Colegrove, E. ;
Yang, J-H ;
Harvey, S. P. ;
Young, M. R. ;
Burst, J. M. ;
Duenow, J. N. ;
Albin, D. S. ;
Wei, S-H ;
Metzger, W. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (07)
[9]  
Gloeckler M, 2003, WORL CON PHOTOVOLT E, P491
[10]   CdTe Solar Cells at the Threshold to 20% Efficiency [J].
Gloeckler, M. ;
Sankin, I. ;
Zhao, Z. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (04) :1389-1393