A framework of linguistic truth-valued propositional logic based on lattice implication algebra

被引:0
作者
Zou, Li [1 ,2 ]
Ma, Jun [1 ]
Xu, Yang [1 ]
机构
[1] Southwest Jiaotong Univ, Ctr Intelligent Control & Dev, Chengdu 610031, Peoples R China
[2] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Peoples R China
来源
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING | 2006年
关键词
lattice implication algebra; lattice-valued logic; linguistic truth-valued logic; J-resolution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The linguistic truth values with linguistic hedges is considered. The linguistic hedge operators in the proposition are put forward and the truth values are divided into different grades. Based on lattice implication algebra a framework of linguistic truth-valued propositional logic is presented to deal with both comparable and incomparable of linguistic truth value. The properties of the propositional formula are discussed. Then based on a filter J of L, J-true, J-false of a formula, J-similar literals and J-complementary literals are defined. In the filter, J-resolution method of the linguistic truth value propositional logic is presented.
引用
收藏
页码:574 / +
页数:2
相关论文
共 50 条
[31]   α-resolution principle based on lattice-valued propositional logic LP(X) [J].
Xu, Y ;
Ruan, D ;
Kerre, EE ;
Liu, J .
INFORMATION SCIENCES, 2000, 130 (1-4) :195-223
[32]   On Compactness and Consistency in Finite Lattice-Valued Propositional Logic [J].
Pan, Xiaodong ;
Xu, Yang ;
Martinez, Luis ;
Ruan, Da ;
Liu, Jun .
HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 :328-+
[33]   Graded consequence relations of lattice-valued propositional logic LP(X) [J].
Wang, XF ;
Meng, D ;
Xu, Y ;
Qin, KY .
2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, :5004-5009
[34]   Semantic theory of finite lattice-valued propositional logic [J].
PAN XiaoDong XU Yang School of Maths Southwest Jiaotong University Chengdu China Intelligent Control Development Center Southwest Jiaotong University Chengdu China .
Science China(Information Sciences), 2010, 53 (10) :2022-2031
[35]   Semantic theory of finite lattice-valued propositional logic [J].
Pan XiaoDong ;
Xu Yang .
SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (10) :2022-2031
[36]   Semantic theory of finite lattice-valued propositional logic [J].
XiaoDong Pan ;
Yang Xu .
Science China Information Sciences, 2010, 53 :2022-2031
[37]   A Multiple and Multidimensional Linguistic Truth-Valued Reasoning Method and its Application in Multimedia Teaching Evaluation [J].
Lu, Yifan ;
Li, Nan ;
Lin, Hongmei ;
Zheng, Hongliang ;
Li, Xiaofeng ;
Zou, Li .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
[38]   A model for handling linguistic terms in the framework of lattice-valued logic LF(X) [J].
Ma, J ;
Li, WJ ;
Xu, Y ;
Song, ZM .
2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, :1504-1509
[39]   Model theory and closure operators of lattice-valued propositional logic LP(X) [J].
Wang, XF ;
Liu, PS .
2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, :5010-5015
[40]   Framework of six linguistic lattice-valued evaluation system [J].
Meng, Dan ;
Jia, Huading ;
Zhang, Zaiqiang ;
Xu, Yang .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13 :226-230