A framework of linguistic truth-valued propositional logic based on lattice implication algebra

被引:0
作者
Zou, Li [1 ,2 ]
Ma, Jun [1 ]
Xu, Yang [1 ]
机构
[1] Southwest Jiaotong Univ, Ctr Intelligent Control & Dev, Chengdu 610031, Peoples R China
[2] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Peoples R China
来源
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING | 2006年
关键词
lattice implication algebra; lattice-valued logic; linguistic truth-valued logic; J-resolution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The linguistic truth values with linguistic hedges is considered. The linguistic hedge operators in the proposition are put forward and the truth values are divided into different grades. Based on lattice implication algebra a framework of linguistic truth-valued propositional logic is presented to deal with both comparable and incomparable of linguistic truth value. The properties of the propositional formula are discussed. Then based on a filter J of L, J-true, J-false of a formula, J-similar literals and J-complementary literals are defined. In the filter, J-resolution method of the linguistic truth value propositional logic is presented.
引用
收藏
页码:574 / +
页数:2
相关论文
共 50 条
[21]   SEMANTIC OF LINGUISTIC TRUTH-VALUED INTUITIONISTIC FUZZY PROPOSITION CALCULUS [J].
Zou, Li ;
Pei, Zheng ;
Liu, Xin ;
Xu, Yang .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12A) :4745-4752
[22]   Resolution in Linguistic Propositional Logic Based on Linear Symmetrical Hedge Algebra [J].
Thi-Minh-Tam Nguyen ;
Viet-Trung Vu ;
The-Vinh Doan ;
Duc-Khanh Tran .
KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2013), VOL 1, 2014, 244 :327-338
[23]   Determination of alpha-resolution for lattice-valued first-order logic based on lattice implication algebra [J].
Xu, Yang ;
Li, Xiaobing ;
Liu, Jun ;
Ruan, Da .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
[24]   Syntactic Extension of Lattice-valued Propositional Logic LP(X) [J].
ZHENG Fengbin LI Qingyu WANG Xuefang XU Yang College of Computer and Information Engineering Henan University Kaifeng China ;
College of Sciences Chongqing Technology and Business University Chongqing China ;
Department of Mathematics Ocean University of China Qingdao China ;
Intelligent Control Development Center Southwest Jiaotong University Chengdu China .
数学季刊, 2006, (02) :301-308
[25]   The Syntax of Lattice-Valued Propositional Logic System lp(X) [J].
李华 .
JournalofDonghuaUniversity(EnglishEdition), 2007, (02) :305-308
[26]   α-Resolution Method for Lattice-valued Horn Generalized Clauses in Lattice-valued Propositional Logic Systems [J].
Xu, Weitao ;
Zhang, Wenqiang ;
Zhang, Dexian ;
Xu, Yang ;
Pan, Xiaodong .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 :75-84
[27]   α-RESOLUTION METHOD FOR LATTICE-VALUED HORN GENERALIZED CLAUSES IN LATTICE-VALUED PROPOSITIONAL LOGIC SYSTEM [J].
Xu, Weitao ;
Zhang, Wenqiang ;
Zhang, Dexian ;
Xu, Yang ;
Pan, Xiaodong .
DECISION MAKING AND SOFT COMPUTING, 2014, 9 :270-275
[28]   α-Resolution Method for Lattice-valued Horn Generalized Clauses in Lattice-valued Propositional Logic Systems [J].
Weitao Xu ;
Wenqiang Zhang ;
Dexian Zhang ;
Yang Xu ;
Xiaodong Pan .
International Journal of Computational Intelligence Systems, 2015, 8 :75-84
[29]   Six-Element Linguistic Truth-Valued Intuitionistic Reasoning in Decision Making [J].
Zou, Li ;
Li, Wenjiang ;
Xu, Yang .
ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT I, PROCEEDINGS, 2008, 5263 :266-+
[30]   α-resolution principle based on lattice-valued propositional logic LP(X) [J].
Xu, Y ;
Ruan, D ;
Kerre, EE ;
Liu, J .
INFORMATION SCIENCES, 2000, 130 (1-4) :195-223