Lineability, differentiable functions and special derivatives

被引:4
作者
Fernandez-Sanchez, J. [1 ]
Rodriguez-Vidanes, D. L. [2 ]
Seoane-Sepulveda, J. B. [3 ]
Trutschnig, W. [4 ]
机构
[1] Univ Almeria, Grp Invest Teoria Copulas & Aplicac, Carretera Sacramento S-N, Almeria 04120, Spain
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal & Matemat Aplicada, Plaza Ciencias 3, Madrid 28040, Spain
[3] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal & Matemat Aplicada, Inst Matemat Interdisciplinar IMI, Plaza Ciencias 3, Madrid 28040, Spain
[4] Univ Salzburg, Dept Math, Hellbrunnerstr 34, A-5020 Salzburg, Austria
关键词
Lineability; Algebrability; Rolle's theorem; Differentiable function; Derivative; 15A03; 46B87; 26A15; 26A27; 46J10;
D O I
10.1007/s43037-020-00103-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work either extends or improves several results on lineability of differentiable functions and derivatives enjoying certain special properties. Among many other results, we show that there exist large algebraic structures inside the following sets of special functions: (1) The class of differentiable functions with discontinuous derivative on a set of positive measure, (2) the family of differentiable functions with a bounded, non-Riemann integrable derivative, (3) the family of functions from (0, 1) to R that are not derivatives, or (4) the family of mappings that do not satisfy Rolle's theorem on real infinite dimensional Banach spaces. Several examples and graphics illustrate the obtained results.
引用
收藏
页数:22
相关论文
共 36 条
[1]   Linear structure of sets of divergent sequences and series [J].
Aizpuru, A. ;
Perez-Eslava, C. ;
Seoane-Sepulveda, J. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :595-598
[2]  
[Anonymous], 2006, Introduction on the theory of numbers
[3]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[4]  
Aron R.M., 2016, LINEABILITY SEARCH L
[5]   Rolle's theorem and negligibility of points in infinite dimensional Banach spaces [J].
Azagra, D ;
Gomez, J ;
Jaramillo, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) :487-495
[6]   The failure of Rolle's theorem in infinite-dimensional Banach spaces [J].
Azagra, D ;
Jiménez-Sevilla, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 182 (01) :207-226
[7]  
Azagra D., 1997, THESIS U COMPLUTENSE
[8]   Algebrability and nowhere Gevrey differentiability [J].
Bastin, F. ;
Conejero, J. A. ;
Esser, C. ;
Seoane-Sepulveda, J. B. .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 205 (01) :127-143
[9]   Highly tempering infinite matrices II: From divergence to convergence via Toeplitz-Silverman matrices [J].
Bernal-Gonzalez, L. ;
Fernandez-Sanchez, J. ;
Seoane-Sepulveda, J. B. ;
Trutschnig, W. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
[10]   ON THE DIMENSION OF SUBSPACES OF CONTINUOUS FUNCTIONS ATTAINING THEIR MAXIMUM FINITELY MANY TIMES [J].
Bernal-Gonzalez, L. ;
Cabana-Mendez, H. J. ;
Munoz-Fernandez, G. A. ;
Seoane-Sepulveda, J. B. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (05) :3063-3083