Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.)

被引:54
|
作者
Rodriguez, Victor M. [1 ]
Butron, Ana [1 ]
Rady, Mohamed O. A. [1 ]
Soengas, Pilar [1 ]
Revilla, Pedro [1 ]
机构
[1] Mision Biol Galicia MBG CSIC, Pontevedra 36080, Spain
关键词
Cold tolerance; Maize; Photosynthesis; Meta-QTL; ANTHOCYANIN ACCUMULATION; CHILLING TOLERANCE; LOW-TEMPERATURE; QTL; PHOTOSYNTHESIS; SEEDLINGS; GROWTH; RELEVANCE; GENOTYPES; LEAVES;
D O I
10.1007/s11032-013-9955-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The effect of low temperature on the physiology of maize has been well studied, but the genetics behind cold tolerance is poorly understood. To better understand the genetics of cold tolerance we conducted a quantitative trait locus (QTL) analysis on a segregating population from the cross of a cold-tolerant (EP42) and a cold-susceptible (A661) inbred line. The experiments were carried under cold (15 A degrees C) and control (25 A degrees C) conditions in a phytotron. Cold temperature reduced the shoot dry weight, number of survival plants and quantum yield of electron transport at photosystem II (I broken vertical bar PSII) and increased the anthocyanin content in maize seedlings. Low correlations were found between characteristics under low and optimum temperature. Ten QTLs were identified, six of them at control temperatures and four under cold temperatures. Through a meta-QTL analysis we identified three genomic regions in chromosomes 2, 4 and 8 that regulate the development of maize seedlings under cold conditions and are the most promising regions to be the target of future marker-assisted selection breeding programs or to perform fine mapping to identify genes involved in cold tolerance in maize.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [21] Identification of quantitative trait loci for related traits of stalk lodging resistance using genome-wide association studies in maize (Zea mays L.)
    Wu, Lifen
    Zheng, Yunxiao
    Jiao, Fuchao
    Wang, Ming
    Zhang, Jing
    Zhang, Zhongqin
    Huang, Yaqun
    Jia, Xiaoyan
    Zhu, Liying
    Zhao, Yongfeng
    Guo, Jinjie
    Chen, Jingtang
    BMC GENOMIC DATA, 2022, 23 (01):
  • [22] Arsenate (AsV) stress response in maize (Zea mays L.)
    Ghosh, Supriya
    Shaw, Arun K.
    Azahar, Ikbal
    Adhikari, Sinchan
    Jana, Samarjit
    Roy, Sankhajit
    Kundu, Abhishek
    Sherpa, Ang R.
    Hossain, Zahed
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2016, 130 : 53 - 67
  • [23] Nitrogen assimilation under osmotic stress in maize (Zea mays L.) seedlings
    Mostafa, Hassan H. A.
    Li, Baozhu
    Zhu, Xiaohong
    Song, Chun-Peng
    PLANT GROWTH REGULATION, 2021, 94 (01) : 87 - 99
  • [24] Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.)
    Fracheboud, Y
    Haldimann, P
    Leipner, J
    Stamp, P
    JOURNAL OF EXPERIMENTAL BOTANY, 1999, 50 (338) : 1533 - 1540
  • [25] Differential Expression of Signaling Pathway Genes Associated With Aflatoxin Reduction Quantitative Trait Loci in Maize (Zea mays L.)
    Parish, Felicia
    Williams, W. Paul
    Windham, Gary L.
    Shan, Xueyan
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [26] MORPHOLOGICAL RESPONSE AND ION REGULATION IN MAIZE (ZEA MAYS L.) VARIETIES UNDER SALT STRESS
    Kusvuran, Alpaslan
    Kiran, Sevinc Uslu
    Nazli, Recep Irfan
    Kusvuran, Sebnem
    FRESENIUS ENVIRONMENTAL BULLETIN, 2015, 24 (01): : 124 - 131
  • [27] Physiological and Biochemical Responses of Maize (Zea mays L.) Cultivars Under Salinity Stress
    Iftikhar, Nosheen
    Perveen, Shagufta
    Ali, Baber
    Saleem, Muhammad Hamzah
    Al-Sadoon, Mohammad Khalid
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2024, 48 (03) : 332 - 343
  • [28] Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.)
    Gu, Riliang
    Chen, Fanjun
    Liu, Bingran
    Wang, Xin
    Liu, Jianchao
    Li, Pengcheng
    Pan, Qingchun
    Pace, Jordon
    Soomro, Ayaz-Ali
    Luebberstedt, Thomas
    Mi, Guohua
    Yuan, Lixing
    THEORETICAL AND APPLIED GENETICS, 2015, 128 (09) : 1777 - 1789
  • [29] Meta-Quantitative Trait Loci Analysis and Candidate Gene Mining for Drought Tolerance-Associated Traits in Maize (Zea mays L.)
    Li, Ronglan
    Wang, Yueli
    Li, Dongdong
    Guo, Yuhang
    Zhou, Zhipeng
    Zhang, Mi
    Zhang, Yufeng
    Wuerschum, Tobias
    Liu, Wenxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (08)
  • [30] Identification of quantitative trait loci for agronomic and physiological traits in maize (Zea mays L.) under high-nitrogen and low-nitrogen conditions
    Kunhui He
    Liguo Chang
    Yuan Dong
    Tingting Cui
    Jianzhou Qu
    Xueyan Liu
    Shutu Xu
    Jiquan Xue
    Jianchao Liu
    Euphytica, 2018, 214