From Knudsen diffusion to Levy walks

被引:74
|
作者
Levitz, P
机构
[1] Ctr. Rech. Matiere Divisee, CNRS, 45071 Orleans Cedex 02
来源
EUROPHYSICS LETTERS | 1997年 / 39卷 / 06期
关键词
D O I
10.1209/epl/i1997-00394-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter, we show that 3D Knudsen diffusion inside disordered porous media can be analysed in terms of a continuous time random walk formalism (CTRW) recently proposed for 1D intermittent chaotic systems. This approach mainly involves the pore chord distribution function f(p)(r). Differently no Gaussian regimes are observed when f(p)(r) follows an algebraic law with an exponent mu*. For 1 < mu* < 3, Knudsen diffusion is a Levy walk. This Levy walk is dominated by ballistic dynamics for 1 < mu* < 2 (mass or surface fractal) and becomes hyperdiffusive for 2 < mu* < 3. For mu* = 3, we reach the marginal case separating the Levy and the Gaussian statistics. In this regime, we discuss some properties of the slit pore geometry which can be compared with a Sinai's billiard without horizon.
引用
收藏
页码:593 / 598
页数:6
相关论文
共 50 条
  • [21] Infinite densities for Levy walks
    Rebenshtok, A.
    Denisov, S.
    Haenggi, P.
    Barkai, E.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [22] Levy decoupled random walks
    Ré, MA
    Budde, CE
    Prato, DP
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 323 : 9 - 18
  • [23] Limit properties of Levy walks
    Magdziarz, Marcin
    Zorawik, Tomasz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [24] Levy walks with velocity fluctuations
    Denisov, S.
    Zaburdaev, V.
    Haenggi, P.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [25] Inferring Levy walks from curved trajectories: A rescaling method
    Tromer, R. M.
    Barbosa, M. B.
    Bartumeus, F.
    Catalan, J.
    da Luz, M. G. E.
    Raposo, E. P.
    Viswanathan, G. M.
    PHYSICAL REVIEW E, 2015, 92 (02)
  • [26] LEVY WALKS IN DYNAMICAL-SYSTEMS
    KLAFTER, J
    ZUMOFEN, G
    SHLESINGER, MF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 222 - 230
  • [27] SCALING LIMITS OF OVERSHOOTING LEVY WALKS
    Magdziarz, Marcin
    Teuerle, Marek
    Zebrowski, Piotr
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1111 - 1132
  • [28] Conditioned random walks and Levy processes
    Doney, R. A.
    Jones, E. M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 139 - 150
  • [29] Universality in the Onset of Superdiffusion in Levy Walks
    Miron, Asaf
    PHYSICAL REVIEW LETTERS, 2020, 124 (14)
  • [30] LEVY WALKS WITH APPLICATIONS TO TURBULENCE AND CHAOS
    SHLESINGER, MF
    KLAFTER, J
    WEST, BJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1986, 140 (1-2) : 212 - 218