Vertex-symmetric generalized Moore graphs

被引:27
作者
Sampels, M [1 ]
机构
[1] Univ Essen Gesamthsch, Dept Math & Comp Sci, D-45117 Essen, Germany
关键词
Moore bound; degree/diameter problem; transmission; mean distance; Cayley graphs;
D O I
10.1016/S0166-218X(03)00294-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transmission of a connected graph G is defined as the sum of all distances in G. A lower bound for the transmission, which can be regarded as a generalization of the Moore bound, was derived by Cerf et at. Graphs with a transmission attaining this bound are called generalized Moore graphs. Using techniques founded on Cayley graphs, we constructed vertex-symmetric generalized Moore graphs. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 50 条
[1]   A revised Moore bound for mixed graphs [J].
Buset, Dominique ;
El Amiri, Mourad ;
Erskine, Grahame ;
Miller, Mirka ;
Perez-Roses, Hebert .
DISCRETE MATHEMATICS, 2016, 339 (08) :2066-2069
[2]   On mixed Moore graphs [J].
Nguyen, Minh Hoang ;
Miller, Mirka ;
Gimbert, Joan .
DISCRETE MATHEMATICS, 2007, 307 (7-8) :964-970
[3]   Bounds in radial Moore graphs of diameter 3 [J].
Ceresuela, Jesus M. ;
Lopez, Nacho .
DISCRETE MATHEMATICS, 2025, 348 (09)
[4]   Moore mixed graphs from Cayley graphs [J].
Dalfo, Cristina ;
Fiol, Miquel Angel .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (01) :183-195
[5]   Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group [J].
Amarra, Carmen ;
Giudici, Michael ;
Praeger, Cheryl E. .
DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) :127-139
[6]   Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups [J].
Du, Jia-Li ;
Feng, Yan-Quan ;
Zhou, Jin-Xin .
EUROPEAN JOURNAL OF COMBINATORICS, 2017, 63 :134-145
[7]   Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group [J].
Carmen Amarra ;
Michael Giudici ;
Cheryl E. Praeger .
Designs, Codes and Cryptography, 2013, 68 :127-139
[8]   Bipartite biregular Moore graphs [J].
Araujo-Pardo, G. ;
Dalfo, C. ;
Fiol, M. A. ;
Lopez, N. .
DISCRETE MATHEMATICS, 2021, 344 (11)
[9]   Graphs of order two less than the Moore bound [J].
Miller, Mirka ;
Simanjuntak, Rinovia .
DISCRETE MATHEMATICS, 2008, 308 (13) :2810-2821
[10]   Vertex reconstruction in Cayley graphs [J].
Konstantinova, Elena .
DISCRETE MATHEMATICS, 2009, 309 (03) :548-559