Vertex-symmetric generalized Moore graphs

被引:27
|
作者
Sampels, M [1 ]
机构
[1] Univ Essen Gesamthsch, Dept Math & Comp Sci, D-45117 Essen, Germany
关键词
Moore bound; degree/diameter problem; transmission; mean distance; Cayley graphs;
D O I
10.1016/S0166-218X(03)00294-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transmission of a connected graph G is defined as the sum of all distances in G. A lower bound for the transmission, which can be regarded as a generalization of the Moore bound, was derived by Cerf et at. Graphs with a transmission attaining this bound are called generalized Moore graphs. Using techniques founded on Cayley graphs, we constructed vertex-symmetric generalized Moore graphs. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 50 条
  • [1] A revised Moore bound for mixed graphs
    Buset, Dominique
    El Amiri, Mourad
    Erskine, Grahame
    Miller, Mirka
    Perez-Roses, Hebert
    DISCRETE MATHEMATICS, 2016, 339 (08) : 2066 - 2069
  • [2] On mixed Moore graphs
    Nguyen, Minh Hoang
    Miller, Mirka
    Gimbert, Joan
    DISCRETE MATHEMATICS, 2007, 307 (7-8) : 964 - 970
  • [3] Bounds in radial Moore graphs of diameter 3
    Ceresuela, Jesus M.
    Lopez, Nacho
    DISCRETE MATHEMATICS, 2025, 348 (09)
  • [4] Moore mixed graphs from Cayley graphs
    Dalfo, Cristina
    Fiol, Miquel Angel
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (01) : 183 - 195
  • [5] Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group
    Amarra, Carmen
    Giudici, Michael
    Praeger, Cheryl E.
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) : 127 - 139
  • [6] Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups
    Du, Jia-Li
    Feng, Yan-Quan
    Zhou, Jin-Xin
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 63 : 134 - 145
  • [7] Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group
    Carmen Amarra
    Michael Giudici
    Cheryl E. Praeger
    Designs, Codes and Cryptography, 2013, 68 : 127 - 139
  • [8] Graphs of order two less than the Moore bound
    Miller, Mirka
    Simanjuntak, Rinovia
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2810 - 2821
  • [9] Bipartite biregular Moore graphs
    Araujo-Pardo, G.
    Dalfo, C.
    Fiol, M. A.
    Lopez, N.
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [10] Vertex reconstruction in Cayley graphs
    Konstantinova, Elena
    DISCRETE MATHEMATICS, 2009, 309 (03) : 548 - 559