A POSTERIORI ERROR ANALYSIS OF FINITE ELEMENT METHOD FOR LINEAR NONLOCAL DIFFUSION AND PERIDYNAMIC MODELS

被引:62
作者
Du, Qiang [1 ]
Ju, Lili [2 ]
Tian, Li [1 ]
Zhou, Kun [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Peridynamic models; nonlocal diffusion; a posteriori error estimate; finite element; INTEGRAL-EQUATIONS; VECTOR CALCULUS; NAVIER EQUATION; CONVERGENCE;
D O I
10.1090/S0025-5718-2013-02708-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some results on a posteriori error analysis of finite element methods for solving linear nonlocal diffusion and bond-based peridynamic models. In particular, we aim to propose a general abstract frame work for a posteriori error analysis of the peridynamic problems. A posteriori error estimators are consequently prompted, the reliability and efficiency of the estimators are proved. Connections between nonlocal a posteriori error estimation and classical local estimation are studied within continuous finite element space. Numerical experiments (1D) are also given to test the theoretical conclusions.
引用
收藏
页码:1889 / 1922
页数:34
相关论文
共 41 条
[11]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[12]   Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis [J].
Bartels, S ;
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 2004, 99 (01) :1-24
[13]  
Bobaru F., 2008, 8 WORLD C COMP MECH
[14]   Convergence, adaptive refinement, and scaling in 1D peridynamics [J].
Bobaru, Florin ;
Yang, Mijia ;
Alves, Leonardo Frota ;
Silling, Stewart A. ;
Askari, Ebrahim ;
Xu, Jifeng .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (06) :852-877
[15]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[16]  
Burch N., 2010, TECHNICAL REPORT
[17]  
Carstensen C, 2004, MATH COMPUT, V73, P1153
[18]  
Carstensen C, 2002, Z ANGEW MATH MECH, V82, P284, DOI 10.1002/1521-4001(200204)82:4<284::AID-ZAMM284>3.0.CO
[19]  
2-5
[20]   Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :69-84