A POSTERIORI ERROR ANALYSIS OF FINITE ELEMENT METHOD FOR LINEAR NONLOCAL DIFFUSION AND PERIDYNAMIC MODELS

被引:62
作者
Du, Qiang [1 ]
Ju, Lili [2 ]
Tian, Li [1 ]
Zhou, Kun [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Peridynamic models; nonlocal diffusion; a posteriori error estimate; finite element; INTEGRAL-EQUATIONS; VECTOR CALCULUS; NAVIER EQUATION; CONVERGENCE;
D O I
10.1090/S0025-5718-2013-02708-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some results on a posteriori error analysis of finite element methods for solving linear nonlocal diffusion and bond-based peridynamic models. In particular, we aim to propose a general abstract frame work for a posteriori error analysis of the peridynamic problems. A posteriori error estimators are consequently prompted, the reliability and efficiency of the estimators are proved. Connections between nonlocal a posteriori error estimation and classical local estimation are studied within continuous finite element space. Numerical experiments (1D) are also given to test the theoretical conclusions.
引用
收藏
页码:1889 / 1922
页数:34
相关论文
共 41 条
[1]  
Ainsworth M., 2002, POSTERIORI ERROR EST
[2]   Variational theory and domain decomposition for nonlocal problems [J].
Aksoylu, Burak ;
Parks, Michael L. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) :6498-6515
[3]   RESULTS ON NONLOCAL BOUNDARY VALUE PROBLEMS [J].
Aksoylu, Burak ;
Mengesha, Tadele .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (12) :1301-1317
[4]  
Alali B., 2010, J ELASTICITY, DOI [10. 1007/s10659-010-9291-4, DOI 10.1007/S10659-010-9291-4.MR2870298]
[5]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[6]   Peridynamics for multiscale materials modeling [J].
Askari, E. ;
Bobaru, F. ;
Lehoucq, R. B. ;
Parks, M. L. ;
Silling, S. A. ;
Weckner, O. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[7]   CAN THE NONLOCAL CHARACTERIZATION OF SOBOLEV SPACES BY BOURGAIN ET AL. BE USEFUL FOR SOLVING VARIATIONAL PROBLEMS? [J].
Aubert, Gilles ;
Kornprobst, Pierre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :844-860
[8]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[9]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[10]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589