Absorbing boundary conditions for the one-dimensional Schrodinger equation with an exterior repulsive potential

被引:54
作者
Antoine, Xavier [1 ]
Besse, Christophe [2 ]
Klein, Pauline [1 ]
机构
[1] Nancy Univ, Inst Elie Cartan Nancy, CNRS UMR 7502, INRIA CORIDA Team, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Lille 1, UFR Math Pures & Appl, Equipe Projet Simpaf Inria CR Lille Nord Europe, Lab Paul Painleve,CNRS,UMR 8524, F-59655 Villeneuve Dascq, France
关键词
Schrodinger equation; Artificial boundary condition; Exterior potential; Unconditionally stable discretization schemes; Numerical simulations; TRANSPARENT; APPROXIMATIONS; SIMULATION; SCHEMES;
D O I
10.1016/j.jcp.2008.09.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mathematical constructions and comparisons of accurate absorbing boundary conditions for the one-dimensional Schrodinger equation with a general variable repulsive potential are developed. Stable semi-discretization schemes are built for the associated initial boundary value problems. Finally, some numerical simulations give a comparison of the various absorbing boundary conditions and show that they yield accurate computations. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:312 / 335
页数:24
相关论文
共 29 条
[1]  
Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
[2]   Numerical schemes for the simulation of the two-dimensional Schrodinger equation using non-reflecting boundary conditions [J].
Antoine, X ;
Besse, C ;
Mouysset, V .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1779-1799
[3]   Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (01) :157-175
[4]   Artificial boundary conditions for one-dimensional cubic nonlinear Schrodinger equations [J].
Antoine, X ;
Besse, C ;
Descombes, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2272-2293
[5]   Construction, structure and asymptotic approximations of a microdifferential transparent boundary condition for the linear Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :701-738
[6]  
Antoine X, 2008, COMMUN COMPUT PHYS, V4, P729
[7]   Numerically absorbing boundary conditions for quantum evolution equations [J].
Arnold, A .
VLSI DESIGN, 1998, 6 (1-4) :313-319
[8]   Scattering theory for the Schrodinger equation with repulsive potential [J].
Bony, JF ;
Carles, R ;
Häfner, D ;
Michel, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (05) :509-579
[9]   Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential [J].
Carles, R .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (04) :483-508
[10]  
Carles R., 2008, SEMI CLASSICAL ANAL