GrSMBMIP: intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet

被引:125
|
作者
Fettweis, Xavier [1 ]
Hofer, Stefan [1 ,2 ]
Krebs-Kanzow, Uta [3 ]
Amory, Charles [1 ]
Aoki, Teruo [4 ,5 ]
Berends, Constantijn J. [6 ]
Born, Andreas [7 ,8 ]
Box, Jason E. [9 ]
Delhasse, Alison [1 ]
Fujita, Koji [10 ]
Gierz, Paul [3 ]
Goelzer, Heiko [6 ,11 ,12 ]
Hanna, Edward [13 ,14 ]
Hashimoto, Akihiro [5 ]
Huybrechts, Philippe [15 ]
Kapsch, Marie-Luise [16 ]
King, Michalea D. [17 ,18 ]
Kittel, Christoph [1 ]
Lang, Charlotte [1 ]
Langen, Peter L. [19 ,20 ]
Lenaerts, Jan T. M. [21 ]
Liston, Glen E. [22 ]
Lohmann, Gerrit [3 ]
Mernild, Sebastian H. [23 ,24 ,25 ,26 ,27 ]
Mikolajewicz, Uwe [16 ]
Modali, Kameswarrao [28 ]
Mottram, Ruth H. [20 ]
Niwano, Masashi [5 ]
Noel, Brice [6 ]
Ryan, Jonathan C. [29 ]
Smith, Amy [30 ]
Streffing, Jan [3 ]
Tedesco, Marco [31 ]
van de Berg, Willem Jan [6 ]
van den Broeke, Michiel [6 ]
van de Wal, Roderik S. W. [6 ,32 ]
van Kampenhout, Leo [6 ]
Wilton, David [33 ]
Wouters, Bert [6 ,34 ]
Ziemen, Florian [16 ]
Zolles, Tobias [7 ,8 ]
机构
[1] Univ Liege, Spheres Res Unit, Geog, Liege, Belgium
[2] Univ Oslo, Dept Geosci, Sect Meteorol & Oceanog, Oslo, Norway
[3] Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Bremerhaven, Germany
[4] Natl Inst Polar Res, Tachikawa, Tokyo, Japan
[5] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan
[6] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands
[7] Univ Bergen, Dept Earth Sci, Bergen, Norway
[8] Bjerknes Ctr Climate Res, Bergen, Norway
[9] Geol Survey Denmark & Greenland, Copenhagen, Denmark
[10] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan
[11] Univ Libre Bruxelles, Lab Glaciol, Brussels, Belgium
[12] Bjerknes Ctr Climate Res, NORCE Norwegian Res Ctr, Bergen, Norway
[13] Sch Geog, Lincoln, England
[14] Lincoln Ctr Water & Planetary Hlth, Lincoln, England
[15] Vrije Univ Brussel, Earth Syst Sci & Dept Geog, Brussels, Belgium
[16] Max Planck Inst Meteorol, Hamburg, Germany
[17] Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH 43210 USA
[18] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA
[19] Aarhus Univ, Dept Environm Sci, iClimate, Roskilde, Denmark
[20] Danish Meteorol Inst, Copenhagen, Denmark
[21] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[22] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80528 USA
[23] Nansen Environm & Remote Sensing Ctr, Bergen, Norway
[24] Western Norway Univ Appl Sci, Dept Environm Sci, Sogndal, Norway
[25] Univ Bergen, Geophys Inst, Bergen, Norway
[26] Univ Magallanes, Antarctic & Sub Antarctic Program, Punta Arenas, Chile
[27] Southern Danish Univ, Vice Chancellors Off, Odense, Denmark
[28] Univ Hamburg, Reg Rechenzentrum, Hamburg, Germany
[29] Brown Univ, Inst Brown Environm & Soc, Providence, RI 02912 USA
[30] Univ Sheffield, Dept Geog, Sheffield S3 7ND, S Yorkshire, England
[31] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA
[32] Univ Utrecht, Dept Phys Geog, Utrecht, Netherlands
[33] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
[34] Delft Univ Technol, Dept Geosci & Remote Sensing, Delft, Netherlands
基金
欧盟地平线“2020”;
关键词
BRIEF COMMUNICATION; HIGH-RESOLUTION; ATMOSPHERIC MODEL; CLIMATE MODEL; SEA-ICE; SNOW; MELT; VARIABILITY; PRECIPITATION; SIMULATIONS;
D O I
10.5194/tc-14-3935-2020
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Observations and models agree that the Greenland Ice Sheet (GrIS) surface mass balance (SMB) has decreased since the end of the 1990s due to an increase in meltwater runoff and that this trend will accelerate in the future. However, large uncertainties remain, partly due to different approaches for modelling the GrIS SMB, which have to weigh physical complexity or low computing time, different spatial and temporal resolutions, different forcing fields, and different ice sheet topographies and extents, which collectively make an inter-comparison difficult. Our GrIS SMB model intercomparison project (GrSMBMIP) aims to refine these uncertainties by intercomparing 13 models of four types which were forced with the same ERA-Interim reanalysis forcing fields, except for two global models. We interpolate all modelled SMB fields onto a common ice sheet mask at 1 km horizontal resolution for the period 1980-2012 and score the outputs against (1) SMB estimates from a combination of gravimetric remote sensing data from GRACE and measured ice discharge; (2) ice cores, snow pits and in situ SMB observations; and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting model deficiencies in an accurate representation of the GrIS ablation zone extent and processes related to surface melt and runoff. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of the same order as RCMs compared with observations and therefore remain useful tools for long-term simulations or coupling with ice sheet models. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present-day SMB relative to observations, suggesting that biases are not systematic among models and that this ensemble estimate can be used as a reference for current climate when carrying out future model developments. However, a higher density of in situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 m w.e. yr(-1) due to large discrepancies in modelled snowfall accumulation.
引用
收藏
页码:3935 / 3958
页数:24
相关论文
共 50 条
  • [21] Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing
    Hanna, Edward
    Huybrechts, Philippe
    Cappelen, John
    Steffen, Konrad
    Bales, Roger C.
    Burgess, Evan
    McConnell, Joseph R.
    Steffensen, Joergen Peder
    Van den Broeke, Michiel
    Wake, Leanne
    Bigg, Grant
    Griffiths, Mike
    Savas, Deniz
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [22] Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012)
    van As, Dirk
    Andersen, Morten Langer
    Petersen, Dorthe
    Fettweis, Xavier
    van Angelen, Jan H.
    Lenaerts, Jan T. M.
    van den Broeke, Michiel R.
    Lea, James M.
    Boggild, Carl E.
    Ahlstrom, Andreas P.
    Steffen, Konrad
    JOURNAL OF GLACIOLOGY, 2014, 60 (220) : 314 - 322
  • [23] A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change
    Bigg, G. R.
    Wei, H. L.
    Wilton, D. J.
    Zhao, Y.
    Billings, S. A.
    Hanna, E.
    Kadirkamanathan, V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2166):
  • [24] Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014
    Munneke, P. Kuipers
    Ligtenberg, S. R. M.
    Noel, B. P. Y.
    Howat, I. M.
    Box, J. E.
    Mosley-Thompson, E.
    McConnell, J. R.
    Steffen, K.
    Harper, J. T.
    Das, S. B.
    van den Broeke, M. R.
    CRYOSPHERE, 2015, 9 (06) : 2009 - 2025
  • [25] Surface energy balance closure over melting snow and ice from in situ measurements on the Greenland ice sheet
    van Tiggelen, Maurice
    Smeets, Paul C. J. P.
    Reijmer, Carleen H.
    van As, Dirk
    Box, Jason E.
    Fausto, Robert S.
    Khan, Shfaqat Abbas
    Rignot, Eric
    van den Broeke, Michiel R.
    JOURNAL OF GLACIOLOGY, 2024, 70
  • [26] The Effect of Physically Based Ice Radiative Processes on Greenland Ice Sheet Albedo and Surface Mass Balance in E3SM
    Whicker-Clarke, C. A.
    Antwerpen, R.
    Flanner, M. G.
    Schneider, A.
    Tedesco, M.
    Zender, C. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (07)
  • [27] Variations of Mass Balance of the Greenland Ice Sheet from 2002 to 2019
    Mu, Yaqiong
    Wei, Yanqiang
    Wu, Jinkui
    Ding, Yongjian
    Shangguan, Donghui
    Zeng, Di
    REMOTE SENSING, 2020, 12 (16)
  • [28] The K-transect on the western Greenland Ice Sheet: Surface energy balance (2003-2016)
    Munneke, P. Kuipers
    Smeets, C. J. P. P.
    Reijmer, C. H.
    Oerlemans, J.
    van de Wal, R. S. W.
    van den Broeke, M. R.
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2018, 50 (01)
  • [29] Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model
    van Angelen, J. H.
    Lenaerts, J. T. M.
    Lhermitte, S.
    Fettweis, X.
    Munneke, P. Kuipers
    van den Broeke, M. R.
    van Meijgaard, E.
    Smeets, C. J. P. P.
    CRYOSPHERE, 2012, 6 (05) : 1175 - 1186
  • [30] Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model
    Fettweis, Xavier
    Box, Jason E.
    Agosta, Cecile
    Amory, Charles
    Kittel, Christoph
    Lang, Charlotte
    van As, Dirk
    Machguth, Horst
    Gallee, Hubert
    CRYOSPHERE, 2017, 11 (02) : 1015 - 1033