Small-Molecule Allosteric Activators of Sirtuins

被引:176
作者
Sinclair, David A. [1 ,2 ]
Guarente, Leonard [3 ]
机构
[1] Harvard Univ, Sch Med, Dept Genet, Glenn Labs Biol Mech Aging, Boston, MA 02115 USA
[2] Univ New S Wales, Sch Med Sci, Dept Pharmacol, Sydney, NSW 2052, Australia
[3] MIT, Dept Biol, Glenn Lab Sci Aging, Cambridge, MA 02139 USA
来源
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 54 | 2014年 / 54卷
关键词
aging; sirtuin; NAD; allosteric activation; HDAC; LIFE-SPAN EXTENSION; FATTY-ACID OXIDATION; CALORIE RESTRICTION; RESVERATROL SUPPLEMENTATION; SIRT1; DEACETYLASE; PROTEIN-KINASE; SACCHAROMYCES-CEREVISIAE; MITOCHONDRIAL-FUNCTION; SILENCING PROTEIN; ENERGY-METABOLISM;
D O I
10.1146/annurev-pharmtox-010611-134657
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The mammalian sirtuins (SIRT1-7) are NAD(+)-dependent lysine deacylases that play central roles in cell survival, inflammation, energy metabolism, and aging. Members of this family of enzymes are considered promising pharmaceutical targets for the treatment of age-related diseases including cancer, type 2 diabetes, inflammatory disorders, and Alzheimer's disease. SIRT1-activating compounds (STACs), which have been identified from a variety of chemical classes, provide health benefits in animal disease models. Recent data point to a common mechanism of allosteric activation by natural and synthetic STACs that involves the binding of STACs to a conserved N-terminal domain in SIRT1. Compared with polyphenols such as resveratrol, the synthetic STACs show greater potency, solubility, and target selectivity. Although considerable progress has been made regarding SIRT1 allosteric activation, key questions remain, including how the molecular contacts facilitate SIRT1 activation, whether other sirtuin family members will be amenable to activation, and whether STACs will ultimately prove safe and efficacious in humans.
引用
收藏
页码:363 / 380
页数:18
相关论文
共 126 条
[21]   Pilot Study of Resveratrol in Older Adults With Impaired Glucose Tolerance [J].
Crandall, Jill P. ;
Oram, Valerie ;
Rescu, Georgeta Trandafi ;
Reid, Migdalia ;
Kishore, Preeti ;
Hawkins, Meredith ;
Cohen, Hillel W. ;
Barzilai, Nir .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2012, 67 (12) :1307-1312
[22]   Locus specificity determinants in the multifunctional yeast silencing protein Sir2 [J].
Cuperus, G ;
Shafaatian, F ;
Shore, D .
EMBO JOURNAL, 2000, 19 (11) :2641-2651
[23]   SIRT1 Activation by Small Molecules KINETIC AND BIOPHYSICAL EVIDENCE FOR DIRECT INTERACTION OF ENZYME AND ACTIVATOR [J].
Dai, Han ;
Kustigian, Lauren ;
Carney, David ;
Case, April ;
Considine, Thomas ;
Hubbard, Basil P. ;
Perni, Robert B. ;
Riera, Thomas V. ;
Szczepankiewicz, Bruce ;
Vlasuk, George P. ;
Stein, Ross L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (43) :32695-32703
[24]   Resveratrol stimulates AMP kinase activity in neurons [J].
Dasgupta, Biplab ;
Milbrandt, Jeffrey .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (17) :7217-7222
[25]   RETRACTED: SIRT1 Suppresses β-Amyloid Production by Activating the α-Secretase Gene ADAM10 (Retracted article. See vol. 158, pg. 959, 2014) [J].
Donmez, Gizem ;
Wang, Diana ;
Cohen, Dena E. ;
Guarente, Leonard .
CELL, 2010, 142 (02) :320-332
[26]   Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-induced Metabolic Disorders by Enhancing Fat Oxidation [J].
Feige, Jerome N. ;
Lagouge, Marie ;
Canto, Carles ;
Strehle, Axelle ;
Houten, Sander M. ;
Milne, Jill C. ;
Lambert, Philip D. ;
Mataki, Chikage ;
Elliott, Peter J. ;
Auwerx, Johan .
CELL METABOLISM, 2008, 8 (05) :347-358
[27]   The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth [J].
Firestein, Ron ;
Blander, Gil ;
Michan, Shaday ;
Oberdoerffer, Philipp ;
Ogino, Shuji ;
Campbell, Jennifer ;
Bhimavarapu, Anupama ;
Luikenhuis, Sandra ;
de Cabo, Rafael ;
Fuchs, Charles ;
Hahn, William C. ;
Guarente, Leonard P. ;
Sinclair, David A. .
PLOS ONE, 2008, 3 (04)
[28]   Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt [J].
Fulco, Marcella ;
Cen, Yana ;
Zhao, Po ;
Hoffman, Eric P. ;
McBurney, Michael W. ;
Sauve, Anthony A. ;
Sartorelli, Vittorio .
DEVELOPMENTAL CELL, 2008, 14 (05) :661-673
[29]   The cAMP/PKA Pathway Rapidly Activates SIRT1 to Promote Fatty Acid Oxidation Independently of Changes in NAD+ [J].
Gerhart-Hines, Zachary ;
Dominy, John E., Jr. ;
Blaettler, Sharon M. ;
Jedrychowski, Mark P. ;
Banks, Alexander S. ;
Lim, Ji-Hong ;
Chim, Helen ;
Gygi, Steven P. ;
Puigserver, Pere .
MOLECULAR CELL, 2011, 44 (06) :851-863
[30]   SirT1 Regulates Adipose Tissue Inflammation [J].
Gillum, Matthew P. ;
Kotas, Maya E. ;
Erion, Derek M. ;
Kursawe, Romy ;
Chatterjee, Paula ;
Nead, Kevin T. ;
Muise, Eric S. ;
Hsiao, Jennifer J. ;
Frederick, David W. ;
Yonemitsu, Shin ;
Banks, Alexander S. ;
Qiang, Li ;
Bhanot, Sanjay ;
Olefsky, Jerrold M. ;
Sears, Dorothy D. ;
Caprio, Sonia ;
Shulman, Gerald I. .
DIABETES, 2011, 60 (12) :3235-3245