机构:
Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R ChinaNanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R China
Shen, Xin
[1
]
Huang, Weijian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R ChinaNanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R China
Huang, Weijian
[1
]
Gong, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R ChinaNanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R China
Gong, Jing
[1
]
Sun, Zhixin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Posts & Telecommun, Post Big Data Technol & Applicat Engn Res Ctr Jia, Post Ind Technol Res & Dev Ctr, State Posts Bur Internet Things Technol, Nanjing, Peoples R ChinaNanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R China
Sun, Zhixin
[2
]
机构:
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Post Big Data Technol & Applicat Engn Res Ctr Jia, Post Ind Technol Res & Dev Ctr, State Posts Bur Internet Things Technol, Nanjing, Peoples R China
来源:
2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021
|
2021年
Graph neural network, with its powerful learning ability, has become a cutting-edge method of processing ultra-large-scale network data. In order to polished up the representation accuracy of embedding, the key is to find the intrinsic geometric metric of the complex network. Since the real data is mostly scale-free network, the embedding accuracy of traditional models is still limited by the dimensionality of the euclidean space and computational complexity. Therefore, the hyperbolic embedding, whose metric properties conform to the power-law distribution and tree-like hierarchical structure of the complex network, will effectively approximates the latent lowdimensional manifold of the data distribution. This paper proposes an auto-encoder in hyperbolic space (HVGAE), taking full use of hyperbolic graph convolutional (HGCN) and the idea of variational autoencoder. Under the optimal combination of the encoder module, competitive results have been achieved in different real scenarios.
机构:
Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, AustraliaUniv Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
Zhang, Linjun
Small, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, AustraliaUniv Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
Small, Michael
Judd, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, AustraliaUniv Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA