Li1.5La1.5MO6 (M=W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries

被引:40
作者
Amores, Marco [1 ]
El-Shinawi, Hany [1 ,2 ]
McClelland, Innes [1 ]
Yeandel, Stephen R. [3 ]
Baker, Peter J. [4 ]
Smith, Ronald I. [4 ]
Playford, Helen Y. [4 ]
Goddard, Pooja [3 ]
Corr, Serena A. [1 ,5 ]
Cussen, Edmund J. [1 ,5 ]
机构
[1] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Faraday Inst, Harwell Campus, Didcot OX1 0RA, Oxon, England
[3] Loughborough Univ, Dept Chem, Epinal Way, Loughborough LE11 3TU, Leics, England
[4] STFC Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Harwell Sci & Innovation Campus, Didcot OX11 0QX, Oxon, England
[5] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
TRANSPORT-PROPERTIES; INTERFACE STABILITY; STUFFED GARNETS; OXIDE; CHALLENGES; CONDUCTIVITY; ELECTROLYTE; PERFORMANCE; CONDUCTORS; TA;
D O I
10.1038/s41467-020-19815-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M=W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1V, enabling application as an anode (initial specific capacity >200 mAh g(-1) with remarkably low volume change of similar to 0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5V and a low activation energy barrier (<0.2eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries. The development of the all solid-state battery requires the formation of stable solid/solid interfaces between different battery components. Here the authors tailor the composition to form both electrolyte and anode from the same novel family of perovskites with shared crystal chemistry.
引用
收藏
页数:12
相关论文
共 83 条
[1]   Synthesis and Ionic Conductivity Studies of In- and Y-Doped Li6Hf2O7 as Solid-State Electrolyte for All-Solid State Li-Ion Batteries [J].
Amores, M. ;
Corr, S. A. ;
Cussen, E. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A6395-A6400
[2]  
Amores M, 2015, STFC ISIS NEUTRON MU
[3]   Na1.5La1.5TeO6:Na+ conduction in a novel Na-rich double perovskite [J].
Amores, Marco ;
Baker, Peter J. ;
Cussen, Edmund J. ;
Corr, Serena A. .
CHEMICAL COMMUNICATIONS, 2018, 54 (72) :10040-10043
[4]   Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy [J].
Amores, Marco ;
Ashton, Thomas E. ;
Baker, Peter J. ;
Cussen, Edmund J. ;
Corr, Serena A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) :1729-1736
[5]   A wide-ranging review on Nasicon type materials [J].
Anantharamulu, N. ;
Rao, K. Koteswara ;
Rambabu, G. ;
Kumar, B. Vijaya ;
Radha, Velchuri ;
Vithal, M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (09) :2821-2837
[6]   Raman studies of A2MWO6 tungstate double perovskites [J].
Andrews, R. L. ;
Heyns, A. M. ;
Woodward, P. M. .
DALTON TRANSACTIONS, 2015, 44 (23) :10700-10707
[7]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[8]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[9]  
Barpanda P, 2011, NAT MATER, V10, P772, DOI [10.1038/nmat3093, 10.1038/NMAT3093]
[10]   The perovskite structure - a review of its role in ceramic science and technology [J].
Bhalla, AS ;
Guo, RY ;
Roy, R .
MATERIALS RESEARCH INNOVATIONS, 2000, 4 (01) :3-26