Direct and indirect electroosmotic flow velocity measurements in microchannels

被引:51
作者
Sinton, D [1 ]
Escobedo-Canseco, C [1 ]
Ren, LQ [1 ]
Li, DQ [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
electroosmotic flow; microchannel; flow rate; velocity; flow visualization; TAE; TBE;
D O I
10.1006/jcis.2002.8584
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As microfluidic technologies mature, increasingly complex solutions are employed, and accurate methods for the measurement of electroosmotic flow rates are becoming increasingly important. The methodologies of both a direct method and an indirect method of flow rate measurement are presented here. The direct method involves flow visualization using trace amounts of a caged fluorescent dye. The indirect method is based on the change in current that occurs when one solution in the microchannel is replaced by another. The results of concurrent and independent measurements of electroosmotic velocities of Tris-acetate with EDTA (TAE) and Tris-borate with EDTA (TBE) at 1 x concentration in fused silica capillaries are presented. Although these buffers are commonly used in biological chemistry, these mobilities have not previously been reported. Strong agreement among data collected with both methods establishes confidence in the electroosmotic mobility values obtained and indicates that the current-based method, which requires less infrastructure than the direct method, can provide accurate flow rate measurements under these conditions. Constant electroosmotic mobilities of 4.90 x 10(-8) m(2) V-1 s(-1) for TAE and 3.10 x 10(-8) m(2) V-1 s(-1) for TBE were determined by tests in a range of electrical field strengths from 5 to 20 kV/m. A linear flow rate increase with applied field strength indicated that constant mobility and negligible Joule heating effects were present. Applicability and limitations of both the measurement methods and these buffers are discussed in the context of microfluidic applications. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:184 / 189
页数:6
相关论文
共 18 条
[1]   Liquid transport in rectangular microchannels by electroosmotic pumping [J].
Arulanandam, S ;
Li, DQ .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 161 (01) :89-102
[2]   Determining ζ potential and surface conductance by monitoring the current in electro-osmotic flow [J].
Arulanandam, S ;
Li, DQ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2000, 225 (02) :421-428
[3]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
[4]  
2-7
[5]   Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips [J].
Fluri, K ;
Fitzpatrick, G ;
Chiem, N ;
Harrison, DJ .
ANALYTICAL CHEMISTRY, 1996, 68 (23) :4285-4290
[6]   CAPILLARY ELECTROPHORESIS AND SAMPLE INJECTION SYSTEMS INTEGRATED ON A PLANAR GLASS CHIP [J].
HARRISON, DJ ;
MANZ, A ;
FAN, ZH ;
LUDI, H ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1992, 64 (17) :1926-1932
[7]   Electroosmotic capillary flow with nonuniform zeta potential [J].
Herr, AE ;
Molho, JI ;
Santiago, JG ;
Mungal, MG ;
Kenny, TW ;
Garguilo, MG .
ANALYTICAL CHEMISTRY, 2000, 72 (05) :1053-1057
[8]   Numerical model of electrokinetic flow for capillary electrophoresis [J].
Hu, LG ;
Harrison, JD ;
Masliyah, JH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 215 (02) :300-312
[9]   CURRENT-MONITORING METHOD FOR MEASURING THE ELECTROOSMOTIC FLOW-RATE IN CAPILLARY ZONE ELECTROPHORESIS [J].
HUANG, XH ;
GORDON, MJ ;
ZARE, RN .
ANALYTICAL CHEMISTRY, 1988, 60 (17) :1837-1838
[10]  
Hunter R. J., 1988, Zeta Potential in Colloid Science, Principles and Applications, VThird